Haar wavelet method for solution of variable order linear fractional integro-differential equations

被引:10
|
作者
Amin, Rohul [1 ]
Shah, Kamal [2 ,3 ]
Ahmad, Hijaz [4 ,5 ]
Ganie, Abdul Hamid [6 ]
Abdel-Aty, Abdel-Haleem [7 ,8 ]
Botmart, Thongchai [9 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar 25120, Pakistan
[2] Univ Malakand, Dept Math, Khyber Pakhtunkhwa, Pakistan
[3] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia
[4] Istanbul Ticaret Univ, Informat Technol Applicat & Res Ctr, TR-34445 Istanbul, Turkey
[5] Istanbul Ticaret Univ, Fac Humanities & Social Sci, Dept Math, TR-34445 Istanbul, Turkey
[6] Saudi Elect Univ Abha Male, Coll Sci & Theoret Studies, Basic Sci Dept, Abha 61421, Saudi Arabia
[7] Univ Bisha, Coll Sci, Dept Phys, Bisha 61922, Saudi Arabia
[8] Al Azhar Univ, Fac Sci, Phys Dept, Assiut 71524, Egypt
[9] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 04期
关键词
variable-order fractional calculus; fixed-point theory; Gauss elimination method; Haar wavelet; numerical approximation; NUMERICAL-SOLUTION; DIFFERENTIAL-EQUATIONS; INTEGRAL-EQUATIONS;
D O I
10.3934/math.2022301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we developed a computational Haar collocation scheme for the solution of fractional linear integro-differential equations of variable order. Fractional derivatives of variable order is described in the Caputo sense. The given problem is transformed into a system of algebraic equations using the proposed Haar technique. The results are obtained by solving this system with the Gauss elimination algorithm. Some examples are given to demonstrate the convergence of Haar collocation technique. For different collocation points, maximum absolute and mean square root errors are computed. The results demonstrate that the Haar approach is efficient for solving these equations.
引用
收藏
页码:5431 / 5443
页数:13
相关论文
共 50 条
  • [1] Haar wavelet collocation method for variable order fractional integro-differential equations with stability analysis
    Marasi, H. R.
    Derakhshan, M. H.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (03):
  • [2] Haar wavelet collocation method for variable order fractional integro-differential equations with stability analysis
    H. R. Marasi
    M. H. Derakhshan
    [J]. Computational and Applied Mathematics, 2022, 41
  • [3] ALGORITHM FOR THE SOLUTION OF NONLINEAR VARIABLE-ORDER PANTOGRAPH FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS USING HAAR METHOD
    Shah, Kamal
    Amin, Rohul
    Ali, Gauhar
    Mlaiki, Nabil
    Abdeljawad, Thabet
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (08)
  • [4] Higher-order Haar wavelet method for solution of fourth-order integro-differential equations
    Yasmeen, Shumaila
    Amin, Rohul
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 81
  • [5] EXISTENCE AND SOLUTION OF THIRD-ORDER INTEGRO-DIFFERENTIAL EQUATIONS VIA HAAR WAVELET METHOD
    Amin, Rohul
    Shah, Kamal M.
    Awais, Muhammad
    Mahariq, Ibrahim
    Nisar, Kottakkaran Sooppy
    Sumelka, Wojciech
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (02)
  • [6] A Numerical Method for Fractional Pantograph Delay Integro-Differential Equations on Haar Wavelet
    Ahmad I.
    Amin R.
    Abdeljawad T.
    Shah K.
    [J]. International Journal of Applied and Computational Mathematics, 2021, 7 (2)
  • [7] Haar wavelet method for nonlinear integro-differential equations
    Lepik, Ü
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (01) : 324 - 333
  • [8] Solution of third order linear and nonlinear boundary value problems of integro-differential equations using Haar Wavelet method
    Alqarni, M. M.
    Amin, Rohul
    Shah, Kamal
    Nazir, Shah
    Awais, Muhammad
    Alshehri, Nawal A.
    Mahmoud, Emad E.
    [J]. RESULTS IN PHYSICS, 2021, 25
  • [9] An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet
    Amin, Rohul
    Shah, Kamal
    Asif, Muhammad
    Khan, Imran
    Ullah, Faheem
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 381
  • [10] On a method for constructing a solution of integro-differential equations of fractional order
    Turmetov, Batirkhan Kh
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (25) : 1 - 14