A polynomial version of Sarnak's conjecture

被引:9
|
作者
Eisner, Tanja [1 ]
机构
[1] Univ Leipzig, Inst Math, D-04009 Leipzig, Germany
关键词
ERGODIC AVERAGES; MOBIUS FUNCTION; CONVERGENCE; BEHAVIOR; THEOREMS;
D O I
10.1016/j.crma.2015.04.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the variations of Sarnak's conjecture due to El Abdalaoui, Kulaga-Przymus, Lemanczyk, de la Rue and by the observation that the Mobius function is a good weight (with limit zero) for the polynomial pointwise ergodic theorem, we introduce a polynomial version of the Sarnak conjecture for minimal systems. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:569 / 572
页数:4
相关论文
共 50 条
  • [41] A corrected version of Meyniel's conjecture
    Galeana-Sanchez, Hortensia
    Manrique, Martin
    Stehlik, Matej
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2012, 9 (01) : 71 - 83
  • [42] An approximate version of Jackson's conjecture
    Liebenau, Anita
    Pehova, Yanitsa
    COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (06): : 886 - 899
  • [43] Automatic sequences generated by synchronizing automata fulfill the Sarnak conjecture
    Deshouillers, Jean-Marc
    Drmota, Michael
    Muellner, Clemens
    STUDIA MATHEMATICA, 2015, 231 (01) : 83 - 95
  • [44] Big polynomial rings and Stillman’s conjecture
    Daniel Erman
    Steven V. Sam
    Andrew Snowden
    Inventiones mathematicae, 2019, 218 : 413 - 439
  • [45] Big polynomial rings and Stillman's conjecture
    Erman, Daniel
    Sam, Steven V.
    Snowden, Andrew
    INVENTIONES MATHEMATICAE, 2019, 218 (02) : 413 - 439
  • [46] A version of Tutte's polynomial for hypergraphs
    Kalman, Tamas
    ADVANCES IN MATHEMATICS, 2013, 244 : 823 - 873
  • [47] The fractional version of Hedetniemi's conjecture is true
    Zhu, Xuding
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (07) : 1168 - 1175
  • [48] REFINED LIST VERSION OF HADWIGER'S CONJECTURE
    Gu, Yangyan
    Jiang, Yiting
    Wood, David R.
    Zhu, Xuding
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (03) : 1738 - 1750
  • [49] Bipartite Version of the Erd?s-Sós Conjecture
    Xinmin HOU
    Chenhui Lü
    Journal of Mathematical Research with Applications, 2019, 39 (03) : 249 - 253
  • [50] An online version of Rota’s basis conjecture
    Guus P. Bollen
    Jan Draisma
    Journal of Algebraic Combinatorics, 2015, 41 : 1001 - 1012