Fuzzy geometry of phase space and quantization of massive fields

被引:1
|
作者
Mayburov, S. N. [1 ]
机构
[1] PN Lebedev Phys Inst, Moscow 117924, Russia
关键词
D O I
10.1088/1751-8113/41/16/164071
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum spacetime and the phase space with fuzzy structure are investigated as the possible quantization formalism. In this theory, the state of the nonrelativistic particle m corresponds to the element of fuzzy ordered set (Foset), i.e. the fuzzy point. Due to Foset partial ( weak) ordering, the m space coordinate x acquires principal uncertainty sigma(x). It is shown that Schrodinger formalism of quantum mechanics can be completely derived from consideration of m evolution in fuzzy phase space with minimal number of axioms.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Fuzzy space analytic geometry
    Qiu, Ji-Qing
    Zhang, Min
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 1751 - +
  • [22] Flux Quantization on Phase Space
    Sati, Hisham
    Schreiber, Urs
    ANNALES HENRI POINCARE, 2024,
  • [23] On space quantization in time varying magnetic fields
    Motz, L
    Rose, ME
    PHYSICAL REVIEW, 1936, 50 (04): : 348 - 355
  • [24] HAMILTONIAN QUANTIZATION OF EFFECTIVE LAGRANGIANS WITH MASSIVE VECTOR-FIELDS
    GROSSEKNETTER, C
    PHYSICAL REVIEW D, 1993, 48 (06): : 2854 - 2864
  • [25] RANDOM FIELDS AND THE GEOMETRY OF WIENER SPACE
    Taylor, Jonathan E.
    Vadlamani, Sreekar
    ANNALS OF PROBABILITY, 2013, 41 (04): : 2724 - 2754
  • [26] Analytical fuzzy space geometry I
    Ghosh, Debdas
    Gupta, Diksha
    Som, Tanmoy
    FUZZY SETS AND SYSTEMS, 2021, 421 : 77 - 110
  • [27] Analytical fuzzy space geometry II
    Ghosh, Debdas
    Gupta, Diksha
    Som, Tanmoy
    FUZZY SETS AND SYSTEMS, 2023, 459 : 144 - 181
  • [28] Field Quantization on Noncommutative Phase Space
    Hu, Haihua
    Cao, Xiaohua
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON LOGISTICS, ENGINEERING, MANAGEMENT AND COMPUTER SCIENCE (LEMCS 2015), 2015, 117 : 806 - 808
  • [29] Casimir energies for massive scalar fields in a spherical geometry
    Bordag, M
    Elizalde, E
    Kirsten, K
    Leseduarte, S
    PHYSICAL REVIEW D, 1997, 56 (08): : 4896 - 4904
  • [30] IS REDUCED PHASE-SPACE QUANTIZATION EQUIVALENT TO DIRAC QUANTIZATION
    SCHLEICH, K
    CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (08) : 1529 - 1538