Fuzzy geometry of phase space and quantization of massive fields

被引:1
|
作者
Mayburov, S. N. [1 ]
机构
[1] PN Lebedev Phys Inst, Moscow 117924, Russia
关键词
D O I
10.1088/1751-8113/41/16/164071
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum spacetime and the phase space with fuzzy structure are investigated as the possible quantization formalism. In this theory, the state of the nonrelativistic particle m corresponds to the element of fuzzy ordered set (Foset), i.e. the fuzzy point. Due to Foset partial ( weak) ordering, the m space coordinate x acquires principal uncertainty sigma(x). It is shown that Schrodinger formalism of quantum mechanics can be completely derived from consideration of m evolution in fuzzy phase space with minimal number of axioms.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Quantization of massive vector fields in curved space-time
    Furlani, EP
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (06) : 2611 - 2626
  • [2] Reduced phase space quantization of massive vector theory
    Pavel, HP
    Pervushin, VN
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (14): : 2285 - 2308
  • [3] GEOMETRO-STOCHASTIC QUANTIZATION OF MASSIVE FIELDS IN CURVED SPACE-TIME
    PRUGOVECKI, E
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1987, 97 (06): : 837 - 878
  • [4] Covariant quantization of "massive" spin-32 fields in the de sitter space
    Takook, M. V.
    Azizi, A.
    Babaian, E.
    EUROPEAN PHYSICAL JOURNAL C, 2012, 72 (06):
  • [5] Quantization of boson fields in quantum geometry
    Lambiase, G
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (07) : 1267 - 1275
  • [6] Quantization of Boson Fields in Quantum Geometry
    G. Lambiase
    International Journal of Theoretical Physics, 2001, 40 : 1267 - 1275
  • [7] Spacetime quantization and geometry of momentum space
    Mir-Kasimov, RM
    PHYSICS OF ATOMIC NUCLEI, 1998, 61 (11) : 1837 - 1841
  • [8] Generalized BRST quantization and massive vector fields
    Marnelius, R
    Sogami, IS
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (18): : 3101 - 3120
  • [9] TOPOLOGICAL QUANTIZATION OF FREE MASSIVE BOSONIC FIELDS
    Arciniega, Gustavo
    Nettel, Francisco
    Patino, Leonardo
    Quevedo, Hernando
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2012, 26 : 1 - 12
  • [10] Quantization of massive vector fields on ultrastatic spacetimes
    Furlani, EP
    CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (07) : 1665 - 1677