Fractal Curves from Prime Trigonometric Series

被引:4
|
作者
Vartziotis, Dimitris [1 ,2 ]
Bohnet, Doris [2 ]
机构
[1] NIKI Ltd, Res Ctr, Digital Engn, 205 Ethnikis Antistasis St, Ioannina 45500, Greece
[2] TWT GmbH Sci & Innovat, Math Res, Ernsthaldenstr 17, D-70565 Stuttgart, Germany
关键词
trigonometric series; lacunary series; Holder continuity; fractality; random Fourier series; prime distribution;
D O I
10.3390/fractalfract2010002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the convergence of the parameter family of series: V-alpha,V- beta(t) = Sigma(p) p(-alpha) exp(2 pi ip(beta)t), alpha, beta is an element of R->0, t is an element of [0,1) defined over prime numbers p and, subsequently, their differentiability properties. The visible fractal nature of the graphs as a function of alpha, beta is analyzed in terms of Holder continuity, self-similarity and fractal dimension, backed with numerical results. Although this series is not a lacunary series, it has properties in common, such that we also discuss the link of this series with random walks and, consequently, explore its random properties numerically.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [31] On the summation of trigonometric series
    Trickovic, Slobodan B.
    Vidanovic, Mirjana V.
    Stankovic, Miomir S.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (06) : 441 - 452
  • [32] On addable trigonometric series
    Rilsz, M
    MATHEMATISCHE ANNALEN, 1912, 71 : 54 - 75
  • [33] Uniqueness of Trigonometric Series
    Gevorkyan, G. G.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2020, 55 (06): : 365 - 375
  • [34] CLASS OF TRIGONOMETRIC SERIES
    FOMIN, GA
    MATHEMATICAL NOTES, 1978, 23 (1-2) : 117 - 123
  • [35] DOUBLE TRIGONOMETRIC SERIES
    Korus, Peter
    MATHEMATICA BOHEMICA, 2013, 138 (03): : 225 - 243
  • [36] On the Integrability of Trigonometric Series
    S. Yu. Tikhonov
    Mathematical Notes, 2005, 78 : 437 - 442
  • [37] NOTE ON TRIGONOMETRIC SERIES
    BURKILL, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 40 (01) : 39 - &
  • [38] On a multiple trigonometric series
    O. I. Kuznetsova
    Mathematical Notes, 2010, 88 : 902 - 904
  • [39] EVALUATIONS OF TRIGONOMETRIC SERIES
    BAILLIE, R
    HENRICI, P
    JOHNSONBAUGH, R
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (06): : 496 - 498
  • [40] Conjugated trigonometric series
    Alenitch, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1926, 182 : 1599 - 1601