Machine Learning to Delineate Surgeon and Clinical Factors That Anticipate Positive Surgical Margins After Robot-Assisted Radical Prostatectomy

被引:7
|
作者
Lee, Ryan S. [1 ]
Ma, Runzhuo [1 ]
Pham, Stephanie [1 ]
Maya-Silva, Jacqueline [1 ]
Nguyen, Jessica H. [1 ]
Aron, Manju [2 ]
Cen, Steven [3 ]
Daneshmand, Siamak [4 ]
Hung, Andrew J. [1 ]
机构
[1] Univ Southern Calif, Ctr Robot Simulat & Educ, Keck Sch Med USC, Catherine & Joseph Aresty Dept Urol, 1441 Eastlake Ave,Suite 7416, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Keck Sch Med USC, Dept Pathol, Los Angeles, CA 90089 USA
[3] Univ Southern Calif, Keck Sch Med USC, Dept Radiol, Los Angeles, CA 90089 USA
[4] Univ Southern Calif, Keck Sch Med USC, Catherine & Joseph Aresty Dept Urol, Los Angeles, CA 90089 USA
基金
美国国家卫生研究院;
关键词
prostate cancer; machine learning; automated performance metrics; IMPACT; PERFORMANCE; EXPERIENCE; RISK;
D O I
10.1089/end.2021.0890
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Purpose: Automated performance metrics (APMs), derived from instrument kinematic and systems events data during robotic surgery, are validated objective measures of surgeon performance. Our previous studies showed that APMs are strong outcome predictors of urinary continence after robot-assisted radical prostatectomy (RARP). We now use machine learning to investigate how surgeon performance (i.e., APMs) and clinical factors can predict positive surgical margins (PSMs) after RARP.Methods: We prospectively collected data of patients undergoing RARP at our institution from 2016 to 2019. Random Forest model predicted PSMs based on 15 clinical factors and 38 APMs from 11 standardized RARP steps. Out-of-bag Gini impurity index determined the top 10 variables of importance (VOI). APMs in the top 10 VOI were assessed for confounding effects by extracapsular extension (ECE) and pathologic T (pT) through Poisson regression with Generalized Estimating Equation.Results: 55/236 (23.3%) cases had PSMs. Of the 55 cases with PSMs, 9 (16.4%) were pT2 and 46 (83.6%), pT3. The full model, including clinical factors and APMs, achieved area under the curve (AUC) 0.74. When assessing clinical factors or APMs alone, the model achieved AUC 0.72 and 0.64, respectively. The strongest PSM predictors were ECE and pT stage, followed by APMs in specific steps. After adjusting for ECE and pT stage, most APMs remained as independent predictors of PSM.Conclusion: Using machine learning methods, we found that the strongest predictors of PSMs after RARP are nonmodifiable, disease-driven factors (ECE and pT). While APMs provide minimal additional insight into when PSMs may occur, they are nonetheless capable of independently predicting PSMs based on objective measures of surgeon performance.
引用
收藏
页码:1192 / 1198
页数:7
相关论文
共 50 条
  • [21] Risk factors of positive surgical margins after robot-assisted radical prostatectomy in high-volume center: results in 732 cases
    Antonio Benito Porcaro
    Marco Sebben
    Paolo Corsi
    Alessandro Tafuri
    Tania Processali
    Marco Pirozzi
    Nelia Amigoni
    Riccardo Rizzetto
    Giovanni Cacciamani
    Arianna Mariotto
    Alberto Diminutto
    Matteo Brunelli
    Vincenzo De Marco
    Salvatore Siracusano
    Walter Artibani
    Journal of Robotic Surgery, 2020, 14 : 167 - 175
  • [22] Risk factors of positive surgical margins after robot-assisted radical prostatectomy in high-volume center: results in 732 cases
    Porcaro, Antonio Benito
    Sebben, Marco
    Corsi, Paolo
    Tafuri, Alessandro
    Processali, Tania
    Pirozzi, Marco
    Amigoni, Nelia
    Rizzetto, Riccardo
    Cacciamani, Giovanni
    Mariotto, Arianna
    Diminutto, Alberto
    Brunelli, Matteo
    De Marco, Vincenzo
    Siracusano, Salvatore
    Artibani, Walter
    JOURNAL OF ROBOTIC SURGERY, 2020, 14 (01) : 167 - 175
  • [23] Positive surgical margin rates during the robot-assisted laparoscopic radical prostatectomy learning curve of an experienced laparoscopic surgeon
    Adili, Anthony F.
    Di Giovanni, Julia
    Kolesar, Emma
    Wong, Nathan C.
    Hoogenes, Jen
    Dason, Shawn
    Shayegan, Bobby
    CUAJ-CANADIAN UROLOGICAL ASSOCIATION JOURNAL, 2017, 11 (11): : E409 - E413
  • [24] Risk of biochemical recurrence based on extent and location of positive surgical margins after robot-assisted laparoscopic radical prostatectomy
    Gautier Marcq
    Aude Michelet
    Gerjon Hannink
    Jerome Rizk
    Jean Sauvain
    Arnauld Villers
    Mo Saffarini
    Charles H. Rochat
    BMC Cancer, 18
  • [25] Risk of biochemical recurrence based on extent and location of positive surgical margins after robot-assisted laparoscopic radical prostatectomy
    Gautier, Marcq
    Aude, Michelet
    Gerjon, Hannink
    Jerome, Rizk
    Jean, Sauvain
    Arnauld, Villers
    Mo, Saffarini
    Charles, H. Rochat
    BMC CANCER, 2018, 18
  • [26] The surgical learning curve for cancer control after robot-assisted radical prostatectomy
    Bravi, C. A.
    Piazza, P.
    Mazzone, E.
    Sarchi, L.
    Scarcella, S.
    Puliatti, S.
    Knipper, S.
    Dell'Oglio, P.
    Galfano, A.
    Suardi, N.
    Terrone, C.
    Autorino, R.
    Falagario, U.
    Carrieri, G.
    Galosi, A.
    Schiavina, R.
    De Groote, R.
    Moschovas, M.
    Patel, V
    Vickers, A.
    Briganti, A.
    Montorsi, F.
    Mottrie, A.
    EUROPEAN UROLOGY, 2022, 81 : S1210 - S1211
  • [27] Clinical effect of a positive surgical margin without extraprostatic extension after robot-assisted radical prostatectomy
    Hashimoto, Takeshi
    Yoshioka, Kunihiko
    Horiguchi, Yutaka
    Inoue, Rie
    Yoshio, Ohno
    Nakashima, Jun
    Tachibana, Masaaki
    UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2015, 33 (12) : 503.e1 - 503.e6
  • [28] The Surgical Learning Curve for Biochemical Recurrence After Robot-assisted Radical Prostatectomy
    Bravi, Carlo A.
    Dell'Oglio, Paolo
    Mazzone, Elio
    Moschovas, Marcio C.
    Falagario, Ugo
    Piazza, Pietro
    Scarcella, Simone
    Bednarz, Christopher
    Sarchi, Luca
    Tappero, Stefano
    Knipper, Sophie
    De Groote, Ruben
    Sjoberg, Daniel
    Schiavina, Riccardo
    Suardi, Nazareno
    Terrone, Carlo
    Autorino, Riccardo
    Carrieri, Giuseppe
    Galosi, Andrea
    Galfano, Antonio
    Briganti, Alberto
    Montorsi, Francesco
    Patel, Vipul
    Vickers, Andrew
    Mottrie, Alexandre
    EUROPEAN UROLOGY ONCOLOGY, 2023, 6 (04): : 414 - 421
  • [29] Analysis of Learning Curve in Robot-Assisted Radical Prostatectomy Performed by a Surgeon
    Slusarenco, Roman I.
    Mikheev, Konstantin V.
    Prostomolotov, Artem O.
    Sukhanov, Roman B.
    Bezrukov, Evgeny A.
    ADVANCES IN UROLOGY, 2020, 2020
  • [30] Effects of nerve-sparing procedures on surgical margins after robot-assisted radical prostatectomy
    Yang, Ching-Wei
    Wang, Hsiao-Hsien
    Hassouna, Mohamed Fayez
    Chand, Manish
    Huang, William J.
    Chung, Hsiao-Jen
    JOURNAL OF THE CHINESE MEDICAL ASSOCIATION, 2022, 85 (12) : 1131 - 1135