Some characterizations and properties of COM-Poisson random variables

被引:10
|
作者
Li, Bo [1 ]
Zhang, Huiming [2 ,3 ]
He, Jiao [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Ctr Stat Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Conway-Maxwell-Poisson distribution; conditional distribution; recurrence formula; Fisher information for discrete distribution; Stam inequality; closed under addition; BINOMIAL-DISTRIBUTION; OVERDISPERSION; DISTRIBUTIONS;
D O I
10.1080/03610926.2018.1563164
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Starting with a literature review for theoretical properties of COM-Poisson distributions, this paper proposes some new characterizations of COM-Poisson random variables. First, we extend the Moran-Chatterji characterization and generalize the Rao-Rubin characterization of Poisson distribution to COM-Poisson distribution. Then, we define the COM-type discrete r.v. of the discrete random variable X. The probability mass function of has a link to the Renyi entropy and Tsallis entropy of order nu of X. And then we can get the characterization of Stam inequality for COM-type discrete version Fisher information. By using the recurrence formula, the property that COM-Poisson random variables () is not closed under addition is obtained. Finally, under the property of "not closed under addition" of COM-Poisson random variables, a new characterization of Poisson distribution is found.
引用
收藏
页码:1311 / 1329
页数:19
相关论文
共 50 条
  • [1] The exponential COM-Poisson distribution
    Cordeiro, Gauss M.
    Rodrigues, Josemar
    de Castro, Mario
    [J]. STATISTICAL PAPERS, 2012, 53 (03) : 653 - 664
  • [2] The exponential COM-Poisson distribution
    Gauss M. Cordeiro
    Josemar Rodrigues
    Mário de Castro
    [J]. Statistical Papers, 2012, 53 : 653 - 664
  • [3] A COM-Poisson type generalization of the binomial distribution and its properties and applications
    Borges, Patrick
    Rodrigues, Josemar
    Balakrishnan, Narayanaswamy
    Bazan, Jorge
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 87 : 158 - 166
  • [4] Integral form of the COM-Poisson renormalization constant
    Pogany, Tibor K.
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 119 : 144 - 145
  • [5] Efficient Bayesian inference for COM-Poisson regression models
    Chanialidis, Charalampos
    Evers, Ludger
    Neocleous, Tereza
    Nobile, Agostino
    [J]. STATISTICS AND COMPUTING, 2018, 28 (03) : 595 - 608
  • [6] A progressive mean control chart for COM-Poisson distribution
    Alevizakos, Vasileios
    Koukouvinos, Christos
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (03) : 849 - 867
  • [7] Retrospective sampling in MCMC with an application to COM-Poisson regression
    Chanialidis, Charalampos
    Evers, Ludger
    Neocleous, Tereza
    Nobile, Agostino
    [J]. STAT, 2014, 3 (01): : 273 - 290
  • [8] Control chart for monitoring multivariate COM-Poisson attributes
    Saghir, Aamir
    Lin, Zhengyan
    [J]. JOURNAL OF APPLIED STATISTICS, 2014, 41 (01) : 200 - 214
  • [9] The Use of Probability Limits of COM-Poisson Charts and their Applications
    Saghir, Aamir
    Lin, Zhengyan
    Abbasi, Saddam Akber
    Ahmad, Shabbir
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2013, 29 (05) : 759 - 770
  • [10] Cumulative sum charts for monitoring the COM-Poisson processes
    Saghir, Aamir
    Lin, Zhengyan
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2014, 68 : 65 - 77