Weighted tensor nuclear norm minimization for tensor completion using tensor-SVD

被引:32
|
作者
Mu, Yang [1 ]
Wang, Ping [1 ]
Lu, Liangfu [1 ]
Zhang, Xuyun [2 ]
Qi, Lianyong [3 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin, Peoples R China
[2] Univ Auckland, Dept Elect & Comp Engn, Auckland 1142, New Zealand
[3] Qufu Normal Univ, Sch Informat Sci & Engn, Rizhao, Peoples R China
基金
中国国家自然科学基金;
关键词
Tensor completion; Tensor-SVD; Weighted nuclear norm; KKT conditions; Video completion; MATRIX; FACTORIZATION; RECOVERY; MANIFOLD; SPARSE; IMAGE;
D O I
10.1016/j.patrec.2018.12.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider the tensor completion problem, which aims to estimate missing values from limited information. Our model is based on the recently proposed tensor-SVD, which uses the relationships among the color channels in an image or video recovery problem. To improve the availability of the model, we propose the weighted tensor nuclear norm whose weights are fixed in the algorithm, study its properties and prove the Karush-Kuhn-Tucker (KKT) conditions of the proposed algorithm. We conduct extensive experiments to verify the recovery capability of the proposed algorithm. The experimental results demonstrate improvements in computation time and recovery effect compared with related methods. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:4 / 11
页数:8
相关论文
共 50 条
  • [41] Tensor Completion via Generalized Tensor Tubal Rank Minimization Using General Unfolding
    Sun, Weize
    Chen, Yuan
    Huang, Lei
    So, Hing Cheung
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (06) : 868 - 872
  • [42] Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction
    Kreimer, Nadia
    Stanton, Aaron
    Sacchi, Mauricio D.
    [J]. GEOPHYSICS, 2013, 78 (06) : V273 - V284
  • [43] BOUNDS ON THE SPECTRAL NORM AND THE NUCLEAR NORM OF A TENSOR BASED ON TENSOR PARTITIONS
    Li, Zhening
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (04) : 1440 - 1452
  • [44] An efficient tensor completion method via truncated nuclear norm
    Song, Yun
    Li, Jie
    Chen, Xi
    Zhang, Dengyong
    Tang, Qiang
    Yang, Kun
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 70
  • [45] A Tensor Regularized Nuclear Norm Method for Image and Video Completion
    A. H. Bentbib
    A. El Hachimi
    K. Jbilou
    A. Ratnani
    [J]. Journal of Optimization Theory and Applications, 2022, 192 : 401 - 425
  • [46] Tensor completion via joint reweighted tensor Q-nuclear norm for visual data recovery
    Cheng, Xiaoyang
    Kong, Weichao
    Luo, Xin
    Qin, Wenjin
    Zhang, Feng
    Wang, Jianjun
    [J]. SIGNAL PROCESSING, 2024, 219
  • [47] Rank minimization on tensor ring: an efficient approach for tensor decomposition and completion
    Longhao Yuan
    Chao Li
    Jianting Cao
    Qibin Zhao
    [J]. Machine Learning, 2020, 109 : 603 - 622
  • [48] A Tensor Regularized Nuclear Norm Method for Image and Video Completion
    Bentbib, A. H.
    El Hachimi, A.
    Jbilou, K.
    Ratnani, A.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 192 (02) : 401 - 425
  • [49] Rank minimization on tensor ring: an efficient approach for tensor decomposition and completion
    Yuan, Longhao
    Li, Chao
    Cao, Jianting
    Zhao, Qibin
    [J]. MACHINE LEARNING, 2020, 109 (03) : 603 - 622
  • [50] Tensor completion via multi-directional partial tensor nuclear norm with total variation regularization
    Li, Rong
    Zheng, Bing
    [J]. CALCOLO, 2024, 61 (02)