Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 derived from transition metal carbonate with a micro-nanostructure as a cathode material for high-performance Li-ion batteries

被引:16
|
作者
Dai, Dongmei [1 ]
Wang, Bao [2 ]
Li, Bao [1 ]
Li, Fan [1 ]
Wang, Xinbo [1 ]
Tang, Hongwei [1 ]
Chang, Zhaorong [1 ]
机构
[1] Henan Normal Univ, Sch Chem & Chem Engn, Xinxiang 453007, Henan, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, State Key Lab Biochem Engn, Beijing 100190, Peoples R China
来源
RSC ADVANCES | 2016年 / 6卷 / 99期
基金
中国国家自然科学基金;
关键词
SUPERIOR RATE-CAPABILITY; MOLTEN-SALT METHOD; IN-SITU XRD; HIGH-CAPACITY; FACILE SYNTHESIS; RECENT PROGRESS; VOLTAGE FADE; LITHIUM; MICROSPHERES; RETENTION;
D O I
10.1039/c6ra21006f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Compared to commercialized cathode materials, Li-rich layered oxide exhibits a superior mass energy density. However, owing to its low tap/press density, the advantage of its volume energy density is not as obvious as that of its mass energy density, which limits its applications in some volume-constrained fields. It has been shown that the morphology of the precursor is critical to the performances of the final product. Here, solvothermal and co-precipitation methods were adopted to synthesize transition metal carbonate balls with micro-size particles to obtain high-density Li-rich layered oxides. The solvothermal synthesized carbonate showed a micro-nano hierarchical structure composed of nanoplates as subunits, and the co-precipitated synthesized carbonate just presents a micrometer quasi-ball morphology. The Li1.2Mn0.54Ni0.13Co0.13O2 derived from the above solvothermal synthesized carbonate (ST-LMNCO) demonstrated an improved volume density of similar to 14% compared to the one derived from the co-precipitated synthesized carbonate (CP-LMNCO). As for electrochemical performances, the ST-LMNCO exhibited a higher discharge specific capacitance (296.6mA h g(-1) for the first discharge), a better rate performance (201.6 mA h g(-1) at 1C rate) and a better capacity retention capability (86.2% after 80 cycles) than the CP-LMNCO. The morphologies of the transition metal carbonates as starting materials significantly impacted the morphologies of the derived Li-1.2Mn0.54Ni0.13Co0.13O2 particles. Therefore, the carbonate with a hierarchical micro-nanostructure obtained from the solvothermal method is a promising precursor for high performance Li1.2Mn0.Ni-54(0).13Co0.13O2.
引用
收藏
页码:96714 / 96720
页数:7
相关论文
共 50 条
  • [21] Li1.2Mn0.54Ni0.13Co0.13O2 nanosheets with porous structure as a high-performance cathode material for lithium-ion batteries
    Gao, Zhi
    Sun, Wenliang
    Pan, Xiaoliang
    Xie, Shikun
    Liu, Lijun
    Xie, Chengning
    Yuan, Huiling
    RSC ADVANCES, 2021, 11 (58) : 36588 - 36595
  • [22] Improving the electrochemical performance of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by LiF coating
    Zhuolin Du
    Wenjie Peng
    Zhixing Wang
    Huajun Guo
    Qiyang Hu
    Xinhai Li
    Ionics, 2018, 24 : 3717 - 3724
  • [23] Improving the electrochemical performance of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by LiF coating
    Du, Zhuolin
    Peng, Wenjie
    Wang, Zhixing
    Guo, Huajun
    Hu, Qiyang
    Li, Xinhai
    IONICS, 2018, 24 (12) : 3717 - 3724
  • [24] LiAlSiO4-coated Li1.2Mn0.54Ni0.13Co0.13O2 cathode: Enhancing Li-ion battery performance
    Yang, Shang-Mei
    Shao, Shi-Ping
    Xie, Yu-Long
    PLOS ONE, 2025, 20 (02):
  • [25] Li-rich nanoplates of Li1.2Ni0.13Co0.13Mn0.54O2 layered oxide with exposed {010} planes as a high-performance cathode for lithium-ion batteries
    Li, Jili
    Xu, Chunying
    Zhao, Junwei
    Chen, Jian
    Cao, Chuanbao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 734 : 301 - 306
  • [26] Oxygen vacancies in CeO2 surface coating to improve the activation of layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries
    Kai Yang
    Yanying Liu
    Bangbang Niu
    Zhe Yang
    Jianling Li
    Ionics, 2019, 25 : 2027 - 2034
  • [27] A new doping element to improve the electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 materials for Li-ion batteries
    Sun, Yingying
    Wu, Qing
    Zhao, Li
    CERAMICS INTERNATIONAL, 2019, 45 (01) : 1339 - 1347
  • [28] Effect of Different Second Particle Size on Rate Capability of Li-Rich Layered Cathode Materials Li1.2Mn0.54Ni0.13Co0.13O2
    Yin Yan-Ping
    Lu Hua-Quan
    Wang Zhong
    Sun Xue-Yi
    Zhuang Wei-Dong
    Lu Shi-Gang
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2015, 31 (10) : 1966 - 1970
  • [29] Oxygen vacancies in CeO2 surface coating to improve the activation of layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries
    Yang, Kai
    Liu, Yanying
    Niu, Bangbang
    Yang, Zhe
    Li, Jianling
    IONICS, 2019, 25 (05) : 2027 - 2034
  • [30] Improved electrochemical properties of YF3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode for Li-ion batteries
    Liu, Bailong
    Zhang, Zhaohui
    Wan, Jiangkai
    Liu, Shifeng
    IONICS, 2017, 23 (06) : 1365 - 1374