Calculation of nonlinear aerodynamic characteristics of a wing using a 3-D panel method

被引:2
|
作者
Cho, Jeonghyun [1 ]
Cho, Jinsoo [1 ]
机构
[1] Hanyang Univ, Sch Mech Engn, Seoul 133791, South Korea
关键词
nonlinear aerodynamic characteristics; frequency-domain panel method; iterative decambering approach; Newton iteration; kernel function;
D O I
10.1002/fld.1521
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The nonlinear aerodynamic characteristic of a wing is investigated using the frequency-domain panel method. To calculate the nonlinear aerodynamic characteristics of a three-dimensional wing, the iterative decambering approach is introduced into the frequency-domain panel method. The decambering approach uses the known nonlinear aerodynamic characteristic of airfoil and calculates two-variable decambering function to take into consideration the boundary-layer separation effects for the each section of the wing. The multidimensional Newton iteration is used to account for the coupling between the different sections of wing. The nonlinear aerodynamic analyses for a rectangular wing, a tapered wing, and a wing with the control surface are performed. Present results are given with experiments and other numerical results. Computed results are in good agreement with other data. This method can be used for any wing having different nonlinear aerodynamic characteristics of airfoil. The present method will contribute to the analysis of aircraft in the conceptual design because the present method can predict the nonlinear aerodynamic characteristics of a wing with a few computing resources and significant time. Copyright (c) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:23 / 35
页数:13
相关论文
共 50 条