Nonexistence for complete Kahler-Einstein metrics on some noncompact manifolds

被引:1
|
作者
Gao, Peng [1 ]
Yau, Shing-Tung [1 ]
Zhou, Wubin [2 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
RICCI CURVATURE; EQUATION;
D O I
10.1007/s00208-016-1486-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a compact Kahler manifold and N be a subvariety with codimension greater than or equal to 2. We show that there are no complete Kahler-Einstein metrics on . As an application, let E be an exceptional divisor of M. Then cannot admit any complete Kahler-Einstein metric if blow-down of E is a complex variety with only canonical or terminal singularities. A similar result is shown for pairs.
引用
收藏
页码:1271 / 1282
页数:12
相关论文
共 50 条