Vaisman manifolds and transversally Kahler-Einstein metrics

被引:0
|
作者
Slesar, Vladimir [1 ,2 ]
Vilcu, Gabriel-Eduard [1 ,2 ,3 ]
机构
[1] Univ Politehn Bucuresti, Fac Appl Sci, 313 Splaiul Independentei, Bucharest 060042, Romania
[2] Univ Bucharest, Fac Math & Informat, Res Ctr Geometry Topol & Algebra, 14 Acad Str, Bucharest 70109, Romania
[3] Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl M, Calea 13 Septembrie 13, Bucharest 050711, Romania
关键词
Vaisman manifold; Transverse Kahler-Ricci flow; Transverse Kahler-Einstein metric; Quasi-Einstein metric; RICCI FLOW; THEOREM;
D O I
10.1007/s10231-023-01304-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the transverse Kahler-Ricci flow on the canonical foliation of a closed Vaisman manifold to deform the Vaisman metric into another Vaisman metric with a transverse Kahler-Einstein structure. We also study the main features of such a manifold. Among other results, using techniques from the theory of parabolic equations, we obtain a direct proof for the short-time existence of the solution for transverse Kahler-Ricci flow on Vaisman manifolds, recovering in a particular setting a result of Bedulli et al. (J Geom Anal 28:697-725, 2018), but without employing the Molino structure theorem. Moreover, we investigate Einstein-Weyl structures in the setting of Vaisman manifolds and find their relationship with quasi-Einstein metrics. Some examples are also provided to illustrate the main results.
引用
收藏
页码:1855 / 1876
页数:22
相关论文
共 50 条