Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration

被引:1578
|
作者
Liu, Min [1 ]
Pang, Yuanjie [2 ]
Zhang, Bo [1 ,3 ]
De Luna, Phil [4 ]
Voznyy, Oleksandr [1 ]
Xu, Jixian [1 ]
Zheng, Xueli [1 ,5 ]
Dinh, Cao Thang [1 ]
Fan, Fengjia [1 ]
Cao, Changhong [2 ]
de Arquer, F. Pelayo Garcia [1 ]
Safaei, Tina Saberi [1 ]
Mepham, Adam [6 ]
Klinkova, Anna [7 ]
Kumacheva, Eugenia [7 ]
Filleter, Tobin [2 ]
Sinton, David [2 ]
Kelley, Shana O. [6 ,8 ,9 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, 35 St George St, Toronto, ON M5S 1A4, Canada
[2] Univ Toronto, Dept Mech & Ind Engn, 5 Kings Coll Rd, Toronto, ON M5S 3G8, Canada
[3] East China Univ Sci & Technol, Dept Phys, 130 Meilong Rd, Shanghai 200237, Peoples R China
[4] Univ Toronto, Dept Mat Sci & Engn, 184 Coll St, Toronto, ON M5S 3E4, Canada
[5] Tianjin Univ, Sch Mat Sci & Engn, Tianjin Key Lab Composite & Funct Mat, Tianjin 300072, Peoples R China
[6] Univ Toronto, Inst Biomat & Biomed Engn, 164 Coll St, Toronto, ON M5S 3G9, Canada
[7] Univ Toronto, Dept Chem, 80 St George St, Toronto, ON M5S 3H6, Canada
[8] Univ Toronto, Leslie Dan Fac Pharm, Dept Pharmaceut Sci, 144 Coll St, Toronto, ON M5S 3M2, Canada
[9] Univ Toronto, Dept Biochem, 1 Kings Coll Circle, Toronto, ON M5S 1A8, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
CARBON-DIOXIDE; SELECTIVE CONVERSION; AU NANOPARTICLES; ELECTROREDUCTION; EFFICIENCY; CATALYSTS; STEP;
D O I
10.1038/nature19060
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrochemical reduction of carbon dioxide (CO2) to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks using renewable electricity(1-7). Unfortunately, the reaction suffers from slow kinetics(7,8) owing to the low local concentration of CO2 surrounding typical CO2 reduction reaction catalysts. Alkali metal cations are known to overcome this limitation through non-covalent interactions with adsorbed reagent species(9,10), but the effect is restricted by the solubility of relevant salts. Large applied electrode potentials can also enhance CO2 adsorption(11), but this comes at the cost of increased hydrogen (H-2) evolution. Here we report that nanostructured electrodes produce, at low applied overpotentials, local high electric fields that concentrate electrolyte cations, which in turn leads to a high local concentration of CO2 close to the active CO2 reduction reaction surface. Simulations reveal tenfold higher electric fields associated with metallic nanometre-sized tips compared to quasi-planar electrode regions, and measurements using gold nanoneedles confirm a field-induced reagent concentration that enables the CO2 reduction reaction to proceed with a geometric current density for CO of 22 milliamperes per square centimetre at -0.35 volts (overpotential of 0.24 volts). This performance surpasses by an order of magnitude the performance of the best gold nanorods, nanoparticles and oxide-derived noble metal catalysts. Similarly designed palladium nanoneedle electrocatalysts produce formate with a Faradaic efficiency of more than 90 per cent and an unprecedented geometric current density for formate of 10 milliamperes per square centimetre at -0.2 volts, demonstrating the wider applicability of the field-induced reagent concentration concept.
引用
收藏
页码:382 / +
页数:18
相关论文
共 50 条
  • [21] K~+-enhanced electrocatalytic CO2 reduction to multicarbon products in strong acid
    Jun-Jun Li
    Zhi-Cheng Zhang
    Rare Metals, 2022, 41 (03) : 723 - 725
  • [22] Ionic liquid-enhanced electrocatalytic reduction of CO2 with a homogeneous catalyst
    Grills, David
    Matsubara, Yasuo
    Kuwahara, Yutaka
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [23] Electrocatalytic activity of CO2 reduction to CO on cadmium sulfide enhanced by chloride anion doping
    Wang, Mingyan
    Cao, Weiqi
    Yu, Jingkun
    Yang, Dexin
    Qi, Kongsheng
    Zhao, Yuhua
    Hua, Zhixin
    Li, Hongping
    Lu, Siyu
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (15)
  • [24] Activating Copper for Electrocatalytic CO2 Reduction to Formate via Molecular Interactions
    Tao, Zixu
    Wu, Zishan
    Wu, Yueshen
    Wang, Hailiang
    ACS CATALYSIS, 2020, 10 (16) : 9271 - 9275
  • [25] Bimetallic chalcogenides for electrocatalytic CO2 reduction
    Qian Li
    Yu-Chao Wang
    Jian Zeng
    Xin Zhao
    Chen Chen
    Qiu-Mei Wu
    Li-Miao Chen
    Zhi-Yan Chen
    Yong-Peng Lei
    RareMetals, 2021, 40 (12) : 3442 - 3453
  • [26] ELECTROCATALYTIC REDUCTION OF CO2 BY ASSOCIATIVE ACTIVATION
    BRUCE, MRM
    MEGEHEE, E
    SULLIVAN, BP
    THORP, H
    OTOOLE, TR
    DOWNARD, A
    MEYER, TJ
    ORGANOMETALLICS, 1988, 7 (01) : 238 - 240
  • [27] Defective graphene for electrocatalytic CO2 reduction
    Han, Peng
    Yu, Xiaomin
    Yuan, Di
    Kuang, Min
    Wang, Yifei
    Al-Enizi, Abdullah M.
    Zheng, Gengfeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 534 : 332 - 337
  • [28] CO2 reduction: the quest for electrocatalytic materials
    Khezri, Bahareh
    Fisher, Adrian C.
    Pumera, Martin
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (18) : 8230 - 8246
  • [29] Electrocatalytic CO2 reduction in acidic medium
    Hao, Qi
    Liu, Dong-Xue
    Zhong, Hai-Xia
    Tang, Qi
    Yan, Jun-Min
    CHEM CATALYSIS, 2023, 3 (03):
  • [30] Carbon-based materials for low concentration CO2 capture and electrocatalytic reduction
    Hu, Yanxi
    Ding, Yangyang
    Xie, Liangyiqun
    Li, Hanyu
    Jiang, Yujing
    Gong, Ke
    Zhang, Aidi
    Zhu, Wenlei
    Wang, Yuanyuan
    Carbon, 2024, 230