Finding tendencies in streaming data using Big Data frequent itemset mining

被引:38
|
作者
Fernandez-Basso, Carlos [1 ,2 ]
Francisco-Agra, Abel J. [1 ,2 ]
Martin-Bautista, Maria J. [1 ,2 ]
Dolores Ruiz, M. [3 ]
机构
[1] Univ Granada, Dept Comp Sci & AI, Granada, Spain
[2] Univ Granada, CITIC UGR, Granada, Spain
[3] Univ Cadiz, Comp Engn Dept, Cadiz, Spain
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Streaming data; Big Data; Frequent itemset mining; Tendencies; SLIDING WINDOW; PATTERNS;
D O I
10.1016/j.knosys.2018.09.026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The amount of information generated in social media channels or economical/business transactions exceeds the usual bounds of static databases and is in continuous growing. In this work, we propose a frequent itemset mining method using sliding windows capable of extracting tendencies from continuous data flows. For that aim, we develop this method using Big Data technologies, in particular, using the Spark Streaming framework enabling distributing the computation along several clusters and thus improving the algorithm speed. The experimentation carried out shows the capability of our proposal and its scalability when massive amounts of data coming from streams are taken into account. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:666 / 674
页数:9
相关论文
共 50 条
  • [1] Frequent Itemset Mining for Big Data
    Moens, Sandy
    Aksehirli, Emin
    Goethals, Bart
    2013 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2013,
  • [2] Frequent Itemset Mining for Big Data
    Chavan, Kiran
    Kulkarni, Priyanka
    Ghodekar, Pooja
    Patil, S. N.
    2015 International Conference on Green Computing and Internet of Things (ICGCIoT), 2015, : 1365 - 1368
  • [3] Recommendation using Frequent Itemset Mining in Big Data
    Kunjachan, Honeytta
    Hareesh, M. J.
    Sreedevi, K. M.
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 561 - 566
  • [4] Parallel Frequent Itemset Mining on Streaming Data
    He, Yanshan
    Yue, Min
    2014 10TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2014, : 725 - 730
  • [5] Approximate Frequent Itemset Mining for Streaming Data on FPGA
    Li, Yubin
    Sun, Yuliang
    Dai, Guohao
    Xu, Qiang
    Wang, Yu
    Yang, Huazhong
    2016 26TH INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2016,
  • [6] SWEclat: a frequent itemset mining algorithm over streaming data using Spark Streaming
    Xiao, Wen
    Hu, Juan
    JOURNAL OF SUPERCOMPUTING, 2020, 76 (10): : 7619 - 7634
  • [7] SWEclat: a frequent itemset mining algorithm over streaming data using Spark Streaming
    Wen Xiao
    Juan Hu
    The Journal of Supercomputing, 2020, 76 : 7619 - 7634
  • [8] An algorithm for in-core frequent itemset mining on streaming data
    Jin, RM
    Agrawal, G
    FIFTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2005, : 210 - 217
  • [9] Frequent Itemset Mining for Big Data in social media using ClustBigFIM algorithm
    Gole, Sheela
    Tidke, Bharat
    2015 INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING (ICPC), 2015,
  • [10] Iterative sampling based frequent itemset mining for big data
    Wu, Xian
    Fan, Wei
    Peng, Jing
    Zhang, Kun
    Yu, Yong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2015, 6 (06) : 875 - 882