Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner

被引:53
|
作者
Selle, L. [1 ,2 ]
Poinsot, T. [1 ,2 ,3 ]
Ferret, B. [1 ,2 ]
机构
[1] Univ Toulouse, INPT, UPS, IMFT, F-31400 Toulouse, France
[2] CNRS, IMFT, F-31400 Toulouse, France
[3] CERFACS, F-31057 Toulouse, France
关键词
Laminar flame speed; Slot burner; Water addition; LAMINAR BURNING VELOCITY; LARGE-EDDY SIMULATION; HEAT-FLUX METHOD; TURBULENT COMBUSTION; MARKSTEIN LENGTHS; PREMIXED FLAMES; CLOSED VESSEL; AIR MIXTURES; FLOW; PRESSURE;
D O I
10.1016/j.combustflame.2010.08.003
中图分类号
O414.1 [热力学];
学科分类号
摘要
Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:146 / 154
页数:9
相关论文
共 50 条
  • [31] Numerical studies of a pulsing burner stabilized laminar premixed methane-air flame
    Darabiha, N
    Candel, S
    Wirth, DA
    Mahan, JR
    COMBUSTION SCIENCE AND TECHNOLOGY, 1996, 113 : 35 - 47
  • [32] NUMERICAL AND EXPERIMENTAL STUDY OF GEOMETRY EFFECTS ON FUEL/AIR MIXING AND COMBUSTION CHARACTERISTICS OF A DLN BURNER
    Zhao, Yan
    Shao, Weiwei
    Liu, Yan
    Tang, Xiaodi
    Xiao, Yunhan
    McDonell, Vincent
    PROCEEDINGS OF THE ASME 2020 POWER CONFERENCE (POWER2020), 2020,
  • [33] Numerical Investigation on the Effect of Burner Inclination Angle on Methane-Air Combustion in Multi-Regime Burner
    Hikkimath, Ganamatayya Kallayya
    Patel, Devendra Kumar
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2024, 42 (06) : 2193 - 2206
  • [34] Experimental study on the effect of bifurcations on the flame speed of premixed methane/air explosions in ducts
    Zhu, Chuan-jie
    Gao, Zi-shan
    Lu, Xi-miao
    Lin, Bai-quan
    Guo, Chang
    Sun, Yu-min
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2017, 49 : 545 - 550
  • [35] Study on nonpremixed methane/air combustion from flame structure and NOX emission aspect for different burner head structures
    Buyukakin, Mustafa Kemalettin
    Oztuna, Semiha
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (10) : 5421 - 5437
  • [36] Numerical and Experimental Investigations on Combustion Characteristics of Premixed Lean Methane-Air in a Staggered Arrangement Burner with Discrete Cylinders
    Yue, Meng
    Xie, Mao-Zhao
    Shi, Jun-Rui
    Liu, Hong-Sheng
    Chen, Zhong-Shan
    Chang, Ya-Chao
    ENERGIES, 2020, 13 (23)
  • [37] Study of chemiluminescence of methane-air flame stabilized on a flat porous burner
    Moroshkina, Anastasia
    Sereshchenko, Evgeniy
    Mislavskii, Vladimir
    Gubernov, Vladimir
    Minaev, Sergey
    COMBUSTION AND FLAME, 2024, 270
  • [38] Experimental and numerical study of laminar premixed dimethyl ether/methane-air flame
    Yu, Huibin
    Hu, Erjiang
    Cheng, Yu
    Zhang, Xinyi
    Huang, Zuohua
    FUEL, 2014, 136 : 37 - 45
  • [39] Numerical Study On Combustion Characteristics Of Partially Premixed Tubular Flame Burner For DME
    Ren, Shoujun
    Yang, Haolin
    Jiang, Liqiao
    Zhao, Daiqing
    Wang, Xiaohan
    COMBUSTION SCIENCE AND TECHNOLOGY, 2019, 191 (03) : 435 - 452
  • [40] Numerical Investigation of Flow and Flame Structures in an Industrial Swirling Inverse Diffusion Methane/Air Burner
    Sun, Mengwei
    Shao, Yali
    Gong, Yu
    Xu, Chuanyi
    Song, Tao
    Lu, Ping
    Agarwal, Ramesh K.
    FIRE-SWITZERLAND, 2024, 7 (07):