Tuning-fork-based piezoresponse force microscopy

被引:6
|
作者
Labardi, M. [1 ]
Capaccioli, S. [1 ,2 ,3 ]
机构
[1] Univ Pisa, Phys Dept, Sede Secondaria Pisa, CNR,IPCF, Largo Pontecorvo 3, I-56127 Pisa, Italy
[2] Univ Pisa, Phys Dept, Largo Pontecorvo 3, I-56127 Pisa, Italy
[3] Univ Pisa, Ctr Integraz Strumentaz, CISUP, Lungarno Pacinotti 43, I-56126 Pisa, Italy
关键词
piezoresponse force microscopy; quartz tuning-fork; piezoelectricity; FERROELECTRIC DOMAIN-STRUCTURE; TRIGLYCINE SULFATE; SURFACE-CHARGE; PHASE-TRANSITION; FREQUENCY; MODE; MODULATION; RESOLUTION; CONTRAST;
D O I
10.1088/1361-6528/ac1634
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface displacements of a few picometers, occurring after application of an electric potential to piezoelectric materials, can be detected and mapped with nanometer-scale lateral resolution by scanning probe methods, the most notable being piezoresponse force microscopy (PFM). Yet, absolute determination of such displacements, giving access for instance to materials' piezoelectric coefficients, are hindered by both mechanical and electrostatic side-effects, requiring complex experimental and/or post-processing procedures for carrying out reliable results. The employment of quartz tuning-fork force sensors in an intermittent contact mode PFM is able to provide measurements of electrically-induced surface displacements that are not influenced by electrostatic side-effects typical of more conventional cantilever-based PFM. The method is shown to yield piezoeffect mapping on standard ferroelectric test crystals (periodically-poled lithium niobate and triglycine sulfate), as well as on a ferroelectric polymer (PVDF), with no visible influence from the applied dc electric potential.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Fabrication of sharp-needled conical polymer tip on the cross-section of optical fiber via two-photon polymerization for tuning-fork-based atomic force microscopy
    Jung, Byung Je
    Kong, Hong Jin
    Cho, Yong-Hoon
    Lee, Kyu-Seung
    Park, Chung Hyun
    Yang, Dong-Yol
    Lee, Kwang-Sup
    OPTICS COMMUNICATIONS, 2013, 286 : 197 - 203
  • [22] Choosing a preamplifier for tuning fork signal detection in scanning force microscopy
    Jahncke, CL
    Brandt, O
    Fellows, KE
    Hallen, HD
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (08): : 2759 - 2761
  • [23] Spring constant of a tuning-fork sensor for dynamic force microscopy
    van Voerden, Dennis
    Lange, Manfred
    Schmuck, Merlin
    Schmidt, Nico
    Moeller, Rolf
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2012, 3 : 809 - 816
  • [24] Hydrogel tip attached quartz tuning fork for shear force microscopy
    Ko J.
    Jarzembski A.
    Park K.
    Lee J.
    Micro and Nano Systems Letters, 6 (1)
  • [25] Molecular recognition imaging using tuning fork-based transverse dynamic force microscopy
    Hofer, Manuel
    Adamsmaier, Stefan
    van Zanten, Thomas S.
    Chtcheglova, Lilia A.
    Manzo, Carlo
    Duman, Memed
    Mayer, Barbara
    Ebner, Andreas
    Moertelmaier, Manuel
    Kada, Gerald
    Garcia-Parajo, Maria F.
    Hinterdorfer, Peter
    Kienberger, Ferry
    ULTRAMICROSCOPY, 2010, 110 (06) : 605 - 611
  • [26] Carbon fibre tips for scanning probe microscopy based on quartz tuning fork force sensors
    Castellanos-Gomez, A.
    Agrait, N.
    Rubio-Bollinger, G.
    NANOTECHNOLOGY, 2010, 21 (14)
  • [27] Materials contrast in piezoresponse force microscopy
    Kalinin, Sergei V.
    Eliseev, Eugene A.
    Morozovska, Anna N.
    APPLIED PHYSICS LETTERS, 2006, 88 (23)
  • [28] Dynamic behaviour in piezoresponse force microscopy
    Jesse, S
    Baddorf, AP
    Kalinin, SV
    NANOTECHNOLOGY, 2006, 17 (06) : 1615 - 1628
  • [29] Piezoresponse force microscopy and nanoferroic phenomena
    Alexei Gruverman
    Marin Alexe
    Dennis Meier
    Nature Communications, 10
  • [30] Quartz tuning fork based microwave impedance microscopy
    Cui, Yong-Tao
    Ma, Eric Yue
    Shen, Zhi-Xun
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (06):