Efficiently preconditioned inexact Newton methods for large symmetric eigenvalue problems

被引:4
|
作者
Bergamaschi, L. [1 ]
Martinez, A. [2 ]
机构
[1] Univ Padua, Dept Civil Environm & Architectural Engn, I-35100 Padua, Italy
[2] Univ Padua, Dept Math, I-35100 Padua, Italy
来源
OPTIMIZATION METHODS & SOFTWARE | 2015年 / 30卷 / 02期
关键词
eigenvalues; SPD matrix; Newton method; BFGS update; incomplete Cholesky preconditioner; INTERIOR-POINT METHODS; RAYLEIGH QUOTIENT ITERATION; JACOBI-DAVIDSON METHOD; INDEFINITE SYSTEMS; CONVERGENCE; EQUATIONS;
D O I
10.1080/10556788.2014.908878
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose an efficiently preconditioned Newton method for the computation of the leftmost eigenpairs of large and sparse symmetric positive definite matrices. A sequence of preconditioners based on the BFGS update formula is proposed, for the preconditioned conjugate gradient solution of the linearized Newton system to solve Au=q(u) u, q(u) being the Rayleigh quotient. We give theoretical evidence that the sequence of preconditioned Jacobians remains close to the identity matrix if the initial preconditioned Jacobian is so. Numerical results onto matrices arising from various realistic problems with size up to one million unknowns account for the efficiency of the proposed algorithm which reveals competitive with the Jacobi-Davidson method on all the test problems.
引用
收藏
页码:301 / 322
页数:22
相关论文
共 50 条
  • [41] Convergence factors of Newton methods for nonlinear eigenvalue problems
    Jarlebring, Elias
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (10) : 3943 - 3953
  • [42] On the convergence of inexact newton methods
    Idema, Reijer
    Lahaye, Domenico
    Vuik, Cornelis
    Lecture Notes in Computational Science and Engineering, 2015, 103 : 355 - 363
  • [43] A Preconditioned Inexact Newton Method for Nonlinear Sparse Electromagnetic Imaging
    Desmal, Abdulla
    Bagci, Hakan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (03) : 532 - 536
  • [44] Preconditioned Lanczos methods for the minimum eigenvalue of a symmetric positive definite Toeplitz matrix
    Ng, MK
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06): : 1973 - 1986
  • [45] A NONLINEAR ELIMINATION PRECONDITIONED INEXACT NEWTON METHOD FOR HETEROGENEOUS HYPERELASTICITY
    Gong, Shihua
    Cai, Xiao-Chuan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05): : S390 - S408
  • [46] Inexact Newton dogleg methods
    Pawlowski, Roger P.
    Simonis, Joseph P.
    Walker, Homer F.
    Shadid, John N.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) : 2112 - 2132
  • [47] CONVERGENCE ANALYSIS FOR THE MULTIPLICATIVE SCHWARZ PRECONDITIONED INEXACT NEWTON ALGORITHM
    Liu, Lulu
    Keyes, David E.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (05) : 3145 - 3166
  • [48] On the convergence of inexact Newton methods
    Idema, Reijer
    Lahaye, Domenico
    Vuik, Cornelis
    Lecture Notes in Computational Science and Engineering, 2013, 103 : 355 - 363
  • [49] TRPL plus K: THICK-RESTART PRECONDITIONED LANCZOS plus K METHOD FOR LARGE SYMMETRIC EIGENVALUE PROBLEMS
    Wu, Lingfei
    Xue, Fei
    Stathopoulos, Andreas
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (02): : A1013 - A1040
  • [50] Successive linear Newton interpolation methods for solving the large-scale nonlinear eigenvalue problems
    Chen, Xiao-Ping
    Wei, Wei
    Yang, Xi
    Liu, Hao
    Pan, Xiao-Ming
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 387