Efficiently preconditioned inexact Newton methods for large symmetric eigenvalue problems

被引:4
|
作者
Bergamaschi, L. [1 ]
Martinez, A. [2 ]
机构
[1] Univ Padua, Dept Civil Environm & Architectural Engn, I-35100 Padua, Italy
[2] Univ Padua, Dept Math, I-35100 Padua, Italy
来源
OPTIMIZATION METHODS & SOFTWARE | 2015年 / 30卷 / 02期
关键词
eigenvalues; SPD matrix; Newton method; BFGS update; incomplete Cholesky preconditioner; INTERIOR-POINT METHODS; RAYLEIGH QUOTIENT ITERATION; JACOBI-DAVIDSON METHOD; INDEFINITE SYSTEMS; CONVERGENCE; EQUATIONS;
D O I
10.1080/10556788.2014.908878
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose an efficiently preconditioned Newton method for the computation of the leftmost eigenpairs of large and sparse symmetric positive definite matrices. A sequence of preconditioners based on the BFGS update formula is proposed, for the preconditioned conjugate gradient solution of the linearized Newton system to solve Au=q(u) u, q(u) being the Rayleigh quotient. We give theoretical evidence that the sequence of preconditioned Jacobians remains close to the identity matrix if the initial preconditioned Jacobian is so. Numerical results onto matrices arising from various realistic problems with size up to one million unknowns account for the efficiency of the proposed algorithm which reveals competitive with the Jacobi-Davidson method on all the test problems.
引用
收藏
页码:301 / 322
页数:22
相关论文
共 50 条
  • [1] Preconditioned inexact Jacobi–Davidson method for large symmetric eigenvalue problems
    Hong-Yi Miao
    Li Wang
    Computational and Applied Mathematics, 2020, 39
  • [2] PRECONDITIONED INEXACT NEWTON-LIKE METHOD FOR LARGE NONSYMMETRIC EIGENVALUE PROBLEMS
    Miao, Hong-Yi
    Wang, Li
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2021, 11 (04): : 677 - 685
  • [3] Preconditioned inexact Jacobi-Davidson method for large symmetric eigenvalue problems
    Miao, Hong-Yi
    Wang, Li
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [4] Inexact Newton methods for inverse eigenvalue problems
    Department of Mathematics, Chinese University of Hong Kong, Hong Kong, Hong Kong
    Appl Math Comput (New York), 2 SPEC. ISS. (682-689):
  • [5] Inexact Newton methods for inverse eigenvalue problems
    Bai, ZJ
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 682 - 689
  • [6] Inexact Methods for Symmetric Stochastic Eigenvalue Problems
    Lee, Kookjin
    Sousedik, Bedrich
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (04): : 1744 - 1776
  • [7] PRECONDITIONED ITERATIVE METHODS FOR THE LARGE SPARSE SYMMETRIC EIGENVALUE PROBLEM
    EVANS, DJ
    SHANEHCHI, J
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 31 (03) : 251 - 264
  • [8] A LOCALLY OPTIMAL PRECONDITIONED NEWTON-SCHUR METHOD FOR SYMMETRIC ELLIPTIC EIGENVALUE PROBLEMS
    Chen, Wenbin
    Shao, Nian
    Xu, Xuejun
    MATHEMATICS OF COMPUTATION, 2023, 92 (344) : 2655 - 2684
  • [9] A Generalized Inexact Newton Method for Inverse Eigenvalue Problems
    Shen, Weiping
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [10] Feasible Newton methods for symmetric tensor Z-eigenvalue problems
    Xu, Jiefeng
    Li, Dong-Hui
    Bai, Xueli
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (03): : 510 - 528