Monte Carlo localisation of a mobile robot using a Doppler-Azimuth radar

被引:15
|
作者
Guan, Robin Ping [1 ]
Ristic, Branko [1 ]
Wang, Liuping [1 ]
Evans, Rob [2 ]
机构
[1] RMIT Univ, Sch Engn, Melbourne, Vic, Australia
[2] Univ Melbourne, Melbourne Sch Engn, Melbourne, Vic, Australia
关键词
Monte Carlo localisation; Particle filter; Random finite sets; Mobile robot navigation; Doppler radar; TARGET TRACKING;
D O I
10.1016/j.automatica.2018.08.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the moving robot localisation problem using a Doppler-Azimuth radar array. The solution is formulated in the framework of nonlinear/non-Gaussian estimation using a particle filter and a random finite set (RFS) model of measurements. The proposed approach assumes the availability of a feature-based map, radar measurements and robot odometry data. The associations between the measurements and the features of the map (landmarks) are unknown. The RFS model is adopted to deal with false and missed detections and uses Murty's algorithm to reduce computation when solving the association problem. The proposed particle filter incorporates the Kullback-Leibler Distance (KLD)-Sampling to reduce computational time. Monte-Carlo simulation results demonstrate the efficacy of the proposed algorithm. Crown Copyright (C) 2018 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:161 / 166
页数:6
相关论文
共 50 条
  • [1] Feature-based robot navigation using a Doppler-azimuth radar
    Guan, Robin P.
    Ristic, Branko
    Wang, Liuping
    Moran, Bill
    Evans, Rob
    INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (04) : 888 - 900
  • [2] Adaptive Fading Extended Kalman Filtering for Mobile Robot Localization Using a Doppler-Azimuth Radar
    Li, Bin
    Lu, Yanyang
    Karimi, Hamid Reza
    ELECTRONICS, 2021, 10 (20)
  • [3] Robot Localisation in Known Environment Using Monte Carlo Localisation
    Obdrzalek, David
    Basovnik, Stanislav
    Jusko, Pavol
    Petrusek, Tomas
    Tulacek, Michal
    RESEARCH AND EDUCATION IN ROBOTICS: EUROBOT 2009, 2010, 82 : 96 - 106
  • [4] Robust Monte Carlo Localisation Using a Ground Penetrating Radar
    Stasewitsch, Ilja
    Schattenberg, Jan
    Frerichs, Ludger
    ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1, 2023, 589 : 247 - 258
  • [5] Measurement outlier-resistant mobile robot localization using multiple Doppler-azimuth radars under round-robin protocol
    Lu, Yanyang
    Karimi, Hamid Reza
    Komurcugil, Hasan
    ISA TRANSACTIONS, 2023, 137 : 175 - 185
  • [6] Fast Monte Carlo Localization for Mobile Robot
    Chen, Liang
    Sun, Peixin
    Zhang, Guohua
    Niu, Jie
    Zhang, Xiaodong
    ADVANCED RESEARCH ON ELECTRONIC COMMERCE, WEB APPLICATION, AND COMMUNICATION, PT 2, 2011, 144 : 207 - +
  • [7] Mobile robot Monte-Carlo localization using image retrieval
    Zhao, Fengda
    Kong, Lingfu
    Wu, Peiliang
    Fu, Kaiyuan
    ICIEA 2008: 3RD IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, PROCEEDINGS, VOLS 1-3, 2008, : 1362 - +
  • [8] RSS-based Monte Carlo localisation for mobile sensor networks
    Wang, W. D.
    Zhu, Q. X.
    IET COMMUNICATIONS, 2008, 2 (05) : 673 - 681
  • [9] Monte Carlo Localization of Mobile Robot with Modified SIFT
    Wang Yu-quan
    Xia Gui-hua
    Zhu Qi-dan
    Zhao Guo-liang
    2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL III, 2009, : 400 - 403
  • [10] An efficient Monte Carlo method for mobile robot localization
    Wu, Eryong
    Xiang, Zhiyu
    Liu, Jilin
    IEEE ICMA 2006: PROCEEDING OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2006, : 877 - +