Robot Localisation in Known Environment Using Monte Carlo Localisation

被引:0
|
作者
Obdrzalek, David [1 ]
Basovnik, Stanislav [1 ]
Jusko, Pavol [1 ]
Petrusek, Tomas [1 ]
Tulacek, Michal [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, CR-11800 Prague 1, Czech Republic
关键词
Autonomous robot; Localisation; Monte Carlo Localisation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present our approach to localisation of a robot in a known environment. The decision making and the driving is much harder to be done without the knowledge of the exact position. Therefore we discuss the importance of the localisation and describe several known localising algorithms. Then we concentrate on the one we have chosen for our application and outline the implementation supporting various inputs. Combining of the measurements is also discussed. In addition to well known inputs like odometry and other simple inputs we describe deeper our beaconing system which proved to be very useful.
引用
收藏
页码:96 / 106
页数:11
相关论文
共 50 条
  • [1] Monte Carlo localisation of a mobile robot using a Doppler-Azimuth radar
    Guan, Robin Ping
    Ristic, Branko
    Wang, Liuping
    Evans, Rob
    AUTOMATICA, 2018, 97 : 161 - 166
  • [2] Robust Monte Carlo Localisation Using a Ground Penetrating Radar
    Stasewitsch, Ilja
    Schattenberg, Jan
    Frerichs, Ludger
    ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1, 2023, 589 : 247 - 258
  • [3] On Monte Carlo Smoothing in Multi Sensor Indoor Localisation
    Fetzer, Toni
    Ebner, Frank
    Deinzer, Frank
    Koeping, Lukas
    Grzegorzek, Marcin
    2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 2016,
  • [4] Kinect Enabled Monte Carlo Localisation for a Robotic Wheelchair
    Theodoridis, Theodoros
    Hu, Huosheng
    McDonald-Maier, Klaus
    Gu, Dongbing
    INTELLIGENT AUTONOMOUS SYSTEMS 12, VOL 1, 2013, 193 : 153 - 163
  • [5] Embedded Vision-Based Monte-Carlo Robot Localisation without additional Sensors
    Olufs, Sven
    Vincze, Markus
    AFRICON, 2013, 2013,
  • [6] Robot localisation using interval analysis
    Ashokaraj, I
    Tsourdos, A
    White, B
    Silson, P
    PROCEEDINGS OF THE IEEE SENSORS 2003, VOLS 1 AND 2, 2003, : 30 - 35
  • [7] Image-based Monte Carlo localisation with omnidirectional images
    Menegatti, E
    Zoccarato, M
    Pagello, E
    Ishiguro, H
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2004, 48 (01) : 17 - 30
  • [8] Environment Representation for Mobile Robot Localisation (Invited Paper)
    Ranasinghe, Ravindra
    Dissanayake, Gamini
    Furukawa, Tomonari
    Arukgoda, Janindu
    Dantanarayana, Lakshitha
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS (ICIIS), 2017, : 296 - 301
  • [9] Image-based Monte-Carlo localisation without a map
    Menegatti, E
    Zoccarato, M
    Pagello, E
    Ishiguro, H
    AI(ASTERISK)IA 2003: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2003, 2829 : 423 - 435
  • [10] RSS-based Monte Carlo localisation for mobile sensor networks
    Wang, W. D.
    Zhu, Q. X.
    IET COMMUNICATIONS, 2008, 2 (05) : 673 - 681