Direct multivariate subspace time identification

被引:2
|
作者
Kurka, Paulo R. G. [1 ]
Braun, Simon [2 ]
机构
[1] Univ Estadual Campinas, Fac Engn Mecan, BR-13081970 Campinas, SP, Brazil
[2] Technion Israel Inst Technol, Fac Mech Engn, IL-32000 Haifa, Israel
关键词
Modal parameters identification; Subspace-based method; Signal processing;
D O I
10.1016/j.ymssp.2010.03.001
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The paper presents a time domain method to identify structural modal parameters by fitting a discrete multivariate space-time model into noise corrupted, input-output measurement data. The subspace identification scheme proposed is an important characteristic of the method, leading to a deterministic and statistically bias free estimation of parameters. The identification model in this scheme, is kept to the minimum description order, in spite of the presence of noise in the system's input and output The method is used to estimate natural frequencies, damping factors and mode shapes in an experimental modal analysis test. (c) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1634 / 1645
页数:12
相关论文
共 50 条
  • [31] A NOTE ON IDENTIFICATION OF MULTIVARIATE TIME-SERIES MODELS
    MARAVALL, A
    JOURNAL OF ECONOMETRICS, 1981, 16 (02) : 237 - 247
  • [32] Mechanical system identification by multivariate time series models
    Amaro, R. P. Baldeon
    Kurka, P. R. G.
    PROCEEDINGS OF ISMA2006: INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING, VOLS 1-8, 2006, : 3247 - 3255
  • [33] Application of EKF on identification of multivariate chaotic time series
    School of Electronic and Information Engineering, Dalian University of Technology, Dalian 116023, China
    不详
    Xitong Fangzhen Xuebao, 2006, 9 (2525-2529+2533):
  • [34] Multivariate polynomial regression for identification of chaotic time series
    Vaccari, D. A.
    Wang, H.-K.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2007, 13 (04) : 395 - 412
  • [35] A subspace algorithm for the identification of discrete time frequency domain power spectra
    Van Overschee, P
    De Moor, B
    Dehandschutter, W
    Swevers, J
    AUTOMATICA, 1997, 33 (12) : 2147 - 2157
  • [36] Identification of step response estimates utilizing continuous time subspace approach
    Aziz, Muhammad Hilmi R. A.
    Mohd-Mokhtar, Rosmiwati
    Wang, Liuping
    JOURNAL OF PROCESS CONTROL, 2013, 23 (03) : 254 - 270
  • [37] Subspace-based identification of linear time-varying system
    Shi, Z.Y.
    Law, S.S.
    Li, H.N.
    AIAA Journal, 2007, 45 (08): : 2042 - 2050
  • [38] Recursive continuous-time subspace identification using Laguerre filters
    Bergamasco, Marco
    Lovera, Marco
    Ohta, Yoshito
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 6469 - 6474
  • [39] Subspace identification of continuous time models for process fault detection and isolation
    Li, WH
    Raghavan, H
    Shah, S
    JOURNAL OF PROCESS CONTROL, 2003, 13 (05) : 407 - 421
  • [40] Subspace-based identification of linear time-varying system
    Shi, Z. Y.
    Law, S. S.
    Li, H. N.
    AIAA JOURNAL, 2007, 45 (08) : 2042 - 2050