Is there any unique frequency operator for quantum-mechanical anharmonic oscillators

被引:5
|
作者
Pathak, A
Fernández, FM
机构
[1] Jaypee Inst Informat Technol, Dept Phys, Noidy 201307, India
[2] Univ Nacl La Plata, Fac Ciencias Exactas, RA-1900 La Plata, Argentina
关键词
D O I
10.1016/j.physleta.2005.01.097
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss some recently proposed methods that yield operator solutions free from secular terms for the quantum-mechanical anharmonic oscillators. The frequency operators obtained in those methods are not same. In the present work we show that the apparent differences between the frequency operators derived by different approaches are due to the different ordering of noncommuting observables. Here we derive some relations between the existing frequency operators. In some cases we generalize results from quartic to higher anharmonicities. (c) 2005 Elsevier B.V All rights reserved.
引用
收藏
页码:390 / 400
页数:11
相关论文
共 50 条
  • [22] The quantum-mechanical position operator and the polarization problem
    Resta, R
    FIRST-PRINCIPLES CALCULATIONS FOR FERROELECTRICS, 1998, (436): : 174 - 183
  • [23] Quantum-mechanical position operator in extended systems
    Resta, R
    PHYSICAL REVIEW LETTERS, 1998, 80 (09) : 1800 - 1803
  • [24] QUANTUM-MECHANICAL DESCRIPTION OF 2 COUPLED HARMONIC OSCILLATORS
    ESTES, LE
    KEIL, TH
    NARDUCCI, LM
    PHYSICAL REVIEW, 1968, 175 (01): : 286 - +
  • [25] Deterministic nonclassicality for quantum-mechanical oscillators in thermal states
    Marek, Petr
    Lachman, Lukas
    Slodicka, Lukas
    Filip, Radim
    PHYSICAL REVIEW A, 2016, 94 (01)
  • [26] ACCURATE ANALYTIC MATRIX-ELEMENTS FOR ANHARMONIC OSCILLATORS USING QUANTUM-MECHANICAL COMMUTATOR RELATIONS AND SUM-RULES
    TIPPING, RH
    JOURNAL OF CHEMICAL PHYSICS, 1973, 59 (12): : 6443 - 6449
  • [27] Operator method for coupled anharmonic oscillators
    Feranchuk, ID
    Tolstik, AL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (11): : 2115 - 2128
  • [28] Comment on "quantum-mechanical position operator in extended systems"
    Zak, J
    PHYSICAL REVIEW LETTERS, 2000, 85 (05) : 1138 - 1138
  • [29] Quantum entanglement of anharmonic oscillators
    Joshi, Chaitanya
    Jonson, Mats
    Andersson, Erika
    Ohberg, Patrik
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (24)
  • [30] EXACT QUANTUM-MECHANICAL TREATMENT OF 2 COUPLED HARMONIC OSCILLATORS
    NARDUCCI, LM
    KEIL, TH
    ESTES, LE
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (06): : 899 - &