A Federated Learning Approach for Privacy Protection in Context-Aware Recommender Systems

被引:25
|
作者
Ali, Waqar [1 ,2 ]
Kumar, Rajesh [1 ]
Deng, Zhiyi [1 ]
Wang, Yansong [1 ]
Shao, Jie [1 ,3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Univ Lahore, Fac Informat Technol, Lahore 54000, Pakistan
[3] Sichuan Artificial Intelligence Res Inst, Yibin 644000, Peoples R China
来源
COMPUTER JOURNAL | 2021年 / 64卷 / 07期
基金
中国国家自然科学基金;
关键词
federated learning; privacy protection; context-aware recommender systems; collaborative filtering; reliable recommendations; DIFFERENTIAL PRIVACY;
D O I
10.1093/comjnl/bxab025
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Privacy protection is one of the key concerns of users in recommender system-based consumer markets. Popular recommendation frameworks such as collaborative filtering (CF) suffer from several privacy issues. Federated learning has emerged as an optimistic approach for collaborative and privacy-preserved learning. Users in a federated learning environment train a local model on a self-maintained item log and collaboratively train a global model by exchanging model parameters instead of personalized preferences. In this research, we proposed a federated learning-based privacy-preserving CF model for context-aware recommender systems that work with a user-defined collaboration protocol to ensure users' privacy. Instead of crawling users' personal information into a central server, the whole data are divided into two disjoint parts, i.e. user data and sharable item information. The inbuilt power of federated architecture ensures the users' privacy concerns while providing considerably accurate recommendations. We evaluated the performance of the proposed algorithm with two publicly available datasets through both the prediction and ranking perspectives. Despite the federated cost and lack of open collaboration, the overall performance achieved through the proposed technique is comparable with popular recommendation models and satisfactory while providing significant privacy guarantees.
引用
收藏
页码:1016 / 1027
页数:12
相关论文
共 50 条
  • [21] A Context-Aware Implicit Feedback Approach for Online Shopping Recommender Systems
    Luu Nguyen Anh-Thu
    Huu-Hoa Nguyen
    Nguyen Thai-Nghe
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2016, PT II, 2016, 9622 : 584 - 593
  • [22] Context-aware monitoring for IoT: an approach based on Agents, and Federated Learning
    Curasma, Herminio Paucar
    Estrella, Julio Cezar
    PROCEEDINGS OF12TH LATIN-AMERICAN SYMPOSIUM ON DEPENDABLE AND SECURE COMPUTING, LADC 2023, 2023, : 164 - 165
  • [23] Context-aware recommender system for adaptive ubiquitous learning
    Boyinbode, Olutayo
    Fatoke, Tunde
    INTERNATIONAL JOURNAL OF MOBILE LEARNING AND ORGANISATION, 2021, 15 (04) : 409 - 426
  • [24] Explanation for User Trust in Context-Aware Recommender Systems for Search-As-Learning
    Rani, Neha
    Qian, Yadi
    Chu, Sharon Lynn
    2023 IEEE INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES, ICALT, 2023, : 47 - 49
  • [25] A Method Toward Privacy Protection in Context-Aware Environment
    Alawadhi, Ranya
    Hussain, Tahani
    10TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2019) / THE 2ND INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40 2019) / AFFILIATED WORKSHOPS, 2019, 151 : 659 - 666
  • [26] A study on context-aware privacy protection for personal information
    Zhang, Qingsheng
    Qi, Yong
    Zhao, Jizhong
    Hou, Di
    Zhao, Tianhai
    Li, Liang
    PROCEEDINGS - 16TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS, VOLS 1-3, 2007, : 1351 - +
  • [27] Collective Embedding for Neural Context-Aware Recommender Systems
    da Costa, Felipe Soares
    Dolog, Peter
    RECSYS 2019: 13TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2019, : 201 - 209
  • [28] Workshop on Context-Aware Recommender Systems (CARS) 2024
    Adomavicius, Gediminas
    Bauman, Konstantin
    Mobasher, Bamshad
    Tuzhilin, Alexander
    Unger, Moshe
    PROCEEDINGS OF THE EIGHTEENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2024, 2024, : 1219 - 1221
  • [29] CARS: Workshop on Context-Aware Recommender Systems 2023
    Adomavicius, Gediminas
    Bauman, Konstantin
    Mobasher, Bamshad
    Tuzhilin, Alexander
    Unger, Moshe
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 1234 - 1236
  • [30] Domain of Application in Context-Aware Recommender Systems: A Review
    Haruna, Khalid
    Ismail, Maizatul Akmar
    Shuhidan, Shuhaida Mohamed
    PROCEEDINGS OF KNOWLEDGE MANAGEMENT INTERNATIONAL CONFERENCE (KMICE) 2016, 2016, : 223 - 228