HOMOGENIZATION OF SYMMETRIC STABLE-LIKE PROCESSES IN STATIONARY ERGODIC MEDIA

被引:5
|
作者
Chen, Xin [1 ]
Chen, Zhen-Qing [2 ]
Kumagai, Takashi [3 ]
Wang, Jian [4 ,5 ,6 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
[3] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
[4] Fujian Normal Univ, Coll Math & Informat, Fuzhou 350007, Peoples R China
[5] Fujian Normal Univ, Fujian Key Lab Math Anal & Applicat, Fuzhou 350007, Peoples R China
[6] Fujian Normal Univ, Ctr Appl Math Fujian Prov FJNU, Fuzhou 350007, Peoples R China
基金
中国国家自然科学基金;
关键词
homogenization; symmetric nonlocal Dirichlet form; ergodic random medium; alpha-stable-like operator; QUENCHED INVARIANCE-PRINCIPLE; RANDOM CONDUCTANCE MODEL; DIRICHLET FORMS; RANDOM-WALK; STOCHASTIC HOMOGENIZATION; PERIODIC HOMOGENIZATION; JUMP-PROCESSES; UPPER-BOUNDS; CONVERGENCE; REGULARITY;
D O I
10.1137/20M1326726
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies homogenization of symmetric nonlocal Dirichlet forms with stablelike jumping kernels in a one-parameter stationary ergodic environment. Under suitable conditions, we establish results of homogenization and identify the limiting effective Dirichlet forms explicitly. The coefficients in the jumping kernels of Dirichlet forms and symmetrizing measures are allowed to be degenerate and unbounded, and the coefficients in the effective Dirichlet forms can also be degenerate.
引用
收藏
页码:2957 / 3001
页数:45
相关论文
共 50 条
  • [21] Mean field games based on stable-like processes
    V. N. Kolokoltsov
    M. S. Troeva
    W. Yang
    Automation and Remote Control, 2016, 77 : 2044 - 2064
  • [22] Mean field games based on stable-like processes
    Kolokoltsov, V. N.
    Troeva, M. S.
    Yang, W.
    AUTOMATION AND REMOTE CONTROL, 2016, 77 (11) : 2044 - 2064
  • [23] Uniqueness in Law for Stable-Like Processes of Variable Order
    Jin, Peng
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (02) : 522 - 552
  • [24] Multifractal analysis for the occupation measure of stable-like processes
    Seuret, Stephane
    Yang, Xiaochuan
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [25] Derivative formulae for SDEs driven by multiplicative α-stable-like processes
    Wang, Linlin
    Xie, Longjie
    Zhang, Xicheng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (03) : 867 - 885
  • [26] SUPERCRITICAL SDES DRIVEN BY MULTIPLICATIVE STABLE-LIKE LEVY PROCESSES
    Chen, Zhen-Qing
    Zhang, Xicheng
    Zhao, Guohuan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (11) : 7621 - 7655
  • [27] HOMOGENIZATION OF SYMMETRIC JUMP PROCESSES IN RANDOM MEDIA
    Chen, Xin
    Chen, Zhen-Qing
    Kumagai, Takashi
    Wang, Jian
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 66 (01): : 83 - 105
  • [28] Homogenization of "viscous" Hamilton-Jacobi equations in stationary ergodic media
    Lions, PL
    Souganidis, PE
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (1-3) : 335 - 375
  • [29] Non-ergodic statistics and spectral density estimation for stationary real harmonizable symmetric α-stable processes
    Hoang, Ly viet
    Spodarev, Evgeny
    BERNOULLI, 2025, 31 (01) : 162 - 186
  • [30] Regularity of Harmonic functions for a class of singular stable-like processes
    Richard F. Bass
    Zhen-Qing Chen
    Mathematische Zeitschrift, 2010, 266 : 489 - 503