HOMOGENIZATION OF SYMMETRIC STABLE-LIKE PROCESSES IN STATIONARY ERGODIC MEDIA

被引:5
|
作者
Chen, Xin [1 ]
Chen, Zhen-Qing [2 ]
Kumagai, Takashi [3 ]
Wang, Jian [4 ,5 ,6 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
[3] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
[4] Fujian Normal Univ, Coll Math & Informat, Fuzhou 350007, Peoples R China
[5] Fujian Normal Univ, Fujian Key Lab Math Anal & Applicat, Fuzhou 350007, Peoples R China
[6] Fujian Normal Univ, Ctr Appl Math Fujian Prov FJNU, Fuzhou 350007, Peoples R China
基金
中国国家自然科学基金;
关键词
homogenization; symmetric nonlocal Dirichlet form; ergodic random medium; alpha-stable-like operator; QUENCHED INVARIANCE-PRINCIPLE; RANDOM CONDUCTANCE MODEL; DIRICHLET FORMS; RANDOM-WALK; STOCHASTIC HOMOGENIZATION; PERIODIC HOMOGENIZATION; JUMP-PROCESSES; UPPER-BOUNDS; CONVERGENCE; REGULARITY;
D O I
10.1137/20M1326726
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies homogenization of symmetric nonlocal Dirichlet forms with stablelike jumping kernels in a one-parameter stationary ergodic environment. Under suitable conditions, we establish results of homogenization and identify the limiting effective Dirichlet forms explicitly. The coefficients in the jumping kernels of Dirichlet forms and symmetrizing measures are allowed to be degenerate and unbounded, and the coefficients in the effective Dirichlet forms can also be degenerate.
引用
收藏
页码:2957 / 3001
页数:45
相关论文
共 50 条