RKNNMDA: Ranking-based KNN for MiRNA-Disease Association prediction
被引:154
|
作者:
Chen, Xing
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, 1 Daxue Rd, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, 1 Daxue Rd, Xuzhou 221116, Jiangsu, Peoples R China
Chen, Xing
[1
]
Wu, Qiao-Feng
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Coll Elect Engn, Hangzhou, Zhejiang, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, 1 Daxue Rd, Xuzhou 221116, Jiangsu, Peoples R China
Wu, Qiao-Feng
[2
]
Yan, Gui-Ying
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, 1 Daxue Rd, Xuzhou 221116, Jiangsu, Peoples R China
Yan, Gui-Ying
[3
]
机构:
[1] China Univ Min & Technol, Sch Informat & Control Engn, 1 Daxue Rd, Xuzhou 221116, Jiangsu, Peoples R China
[2] Zhejiang Univ, Coll Elect Engn, Hangzhou, Zhejiang, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
Cumulative verified experimental studies have demonstrated that microRNAs (miRNAs) could be closely related with the development and progression of human complex diseases. Based on the assumption that functional similar miRNAs may have a strong correlation with phenotypically similar diseases and vice versa, researchers developed various effective computational models which combine heterogeneous biologic data sets including disease similarity network, miRNA similarity network, and known disease-miRNA association network to identify potential relationships between miRNAs and diseases in biomedical research. Considering the limitations in previous computational study, we introduced a novel computational method of Ranking-based KNN for miRNA-Disease Association prediction (RKNNMDA) to predict potential related miRNAs for diseases, and our method obtained an AUC of 0.8221 based on leave-one-out cross validation. In addition, RKNNMDA was applied to 3 kinds of important human cancers for further performance evaluation. The results showed that 96%, 80% and 94% of predicted top 50 potential related miRNAs for Colon Neoplasms, Esophageal Neoplasms, and Prostate Neoplasms have been confirmed by experimental literatures, respectively. Moreover, RKNNMDA could be used to predict potential miRNAs for diseases without any known miRNAs, and it is anticipated that RKNNMDA would be of great use for novel miRNA-disease association identification.
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Chen, Xing
Jiang, Zhi-Chao
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Sch Elect & Informat Engn, Shanghai 201804, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Jiang, Zhi-Chao
Xie, Di
论文数: 0引用数: 0
h-index: 0
机构:
Liaoning Univ, Sch Math, Shenyang 110036, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Xie, Di
Huang, De-Shuang
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Sch Elect & Informat Engn, Shanghai 201804, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Huang, De-Shuang
Zhao, Qi
论文数: 0引用数: 0
h-index: 0
机构:
Liaoning Univ, Sch Math, Shenyang 110036, Peoples R China
Res Ctr Comp Simulating & Informat Proc Biomacrom, Shenyang 110036, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Zhao, Qi
Yan, Gui-Ying
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Yan, Gui-Ying
You, Zhu-Hong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
机构:
Qufu Normal Univ, Sch Software, Qufu 273165, Shandong, Peoples R ChinaQufu Normal Univ, Sch Software, Qufu 273165, Shandong, Peoples R China
Ji, Cunmei
Yu, Ning
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Software, Qufu 273165, Shandong, Peoples R ChinaQufu Normal Univ, Sch Software, Qufu 273165, Shandong, Peoples R China
Yu, Ning
Wang, Yutian
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Software, Qufu 273165, Shandong, Peoples R ChinaQufu Normal Univ, Sch Software, Qufu 273165, Shandong, Peoples R China
Wang, Yutian
Ni, Jiancheng
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Comp Sci & Technol, Qufu 273165, Shandong, Peoples R ChinaQufu Normal Univ, Sch Software, Qufu 273165, Shandong, Peoples R China
Ni, Jiancheng
Zheng, Chunhou
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Sch Artificial Intelligence, Hefei 230601, Peoples R ChinaQufu Normal Univ, Sch Software, Qufu 273165, Shandong, Peoples R China
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
Chen, Xing
Li, Shao-Xin
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
Li, Shao-Xin
Yin, Jun
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
Yin, Jun
Wang, Chun-Chun
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China