16 x 8 quantum dot array operation at cryogenic temperatures

被引:9
|
作者
Lee, Noriyuki [1 ]
Tsuchiya, Ryuta [1 ]
Kanno, Yusuke [1 ]
Mine, Toshiyuki [1 ]
Sasago, Yoshitaka [1 ]
Shinkai, Go [1 ]
Mizokuchi, Raisei [2 ]
Yoneda, Jun [3 ]
Kodera, Tetsuo [2 ]
Yoshimura, Chihiro [1 ]
Saito, Shinichi [1 ]
Hisamoto, Digh [1 ]
Mizuno, Hiroyuki [1 ]
机构
[1] Hitachi Ltd, Res & Dev Grp, Kokubunji, Tokyo 1858601, Japan
[2] Tokyo Inst Technol, Dept Elect & Elect Engn, Meguro Ku, Tokyo 1528552, Japan
[3] Tokyo Inst Technol, Tokyo Tech Acad Super Smart Soc, Meguro Ku, Tokyo 1528552, Japan
关键词
quantum computing; semiconductor devices; silicon-on-insulator; silicon; field effect transistors; quantum dots; LSI circuits; CMOS; GATE; QUBIT;
D O I
10.35848/1347-4065/ac4c07
中图分类号
O59 [应用物理学];
学科分类号
摘要
We developed a 16 x 8 quantum dot array and CMOS circuit hybrid chip (Q-CMOS). By optimizing the transistor design of Q-CMOS formed by fully depleted (FD)-SOI, it is possible to selectively control each of 16 x 8 quantum dots, and obtained characteristics of quantum dot variation for the first time. Due to the mesoscopic effect, the variation in the characteristics of the quantum dots is larger than the threshold voltage variation of the transistors. Thus, we have obtained an important finding that it is necessary to suppress the variability in order to realize a large-scale quantum computer. We have also confirmed that the characteristics of the quantum dots change depending on the applied gate voltages.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] CMOS READOUT ELECTRONICS FOR OPERATION AT CRYOGENIC TEMPERATURES
    SCHOENEBERG, U
    HOSTICKA, BJ
    FENT, J
    OBERLACK, H
    ZIMMER, G
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1989, 24 (03) : 718 - 722
  • [22] Single-Electron Operation of a Silicon-CMOS 2 x 2 Quantum Dot Array with Integrated Charge Sensing
    Gilbert, Will
    Saraiva, Andre
    Lim, Wee Han
    Yang, Chih Hwan
    Laucht, Arne
    Bertrand, Benoit
    Rambal, Nils
    Hutin, Louis
    Escott, Christopher C.
    Vinet, Maud
    Dzurak, Andrew S.
    NANO LETTERS, 2020, 20 (11) : 7882 - 7888
  • [23] Low Penalty Cascaded Operation of a Monolithically Integrated Quantum Dot 1x8 Port Optical Switch
    Wang, H.
    Williams, K. A.
    Wonfor, A.
    de Vries, T.
    Smalbrugge, E.
    Oei, Y. S.
    Smit, M. K.
    Noetzel, R.
    Liu, S.
    Penty, R. V.
    White, I. H.
    2009 35TH EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2009,
  • [24] Contact Resistance Behavior of Land Grid Array Sockets at Cryogenic Temperatures Required for Quantum Measurements
    Ezzouine, Zakaryae
    Danovitch, David
    Bechou, Laurent
    Pioro-Ladriere, Michel
    Lacerte, Michael
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2021, 11 (03): : 367 - 374
  • [25] Gain Dynamics in p-doped InGaAs Quantum Dot Amplifiers from Room to Cryogenic Temperatures
    Borri, P.
    Cesari, V.
    Rossetti, M.
    Fiore, A.
    Langbein, W.
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XVII, 2009, 7211
  • [26] Studying the Operation of Silicon Photomultiplier Matrices at Cryogenic Temperatures
    A. E. Bondar
    E. O. Borisova
    A. F. Buzulutskov
    V. V. Nosov
    V. P. Oleynikov
    A. V. Sokolov
    E. A. Frolov
    Instruments and Experimental Techniques, 2023, 66 : 538 - 552
  • [27] Operation of Large-Area APDs at Cryogenic Temperatures
    Cardini, Alessandro
    Lai, Adriano
    Lai, Alessandra
    2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC), 2012, : 442 - 445
  • [28] Monolithic sapphire parametric transducer operation at cryogenic temperatures
    Locke, CR
    Tobar, ME
    Ivanov, EN
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (07): : 2737 - 2741
  • [29] Semiconductor ferromagnetism in quantum dot array
    Tamura, H
    Shiraishi, K
    Takayanagi, H
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2001, 224 (03): : 723 - 725
  • [30] Manipulation of tunnelling in a quantum dot array
    Jiang, Z
    Duan, SQ
    Zhao, XG
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (26) : 4207 - 4222