On a Class of Implicit-Explicit Runge-Kutta Schemes for Stiff Kinetic Equations Preserving the Navier-Stokes Limit

被引:17
|
作者
Hu, Jingwei [1 ]
Zhang, Xiangxiong [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
Boltzmann equation; BGK/ES-BGK models; IMEX Runge-Kutta schemes; Compressible Euler equations; Navier-Stokes equations; HYPERBOLIC SYSTEMS; BOLTZMANN-EQUATION; BALANCE LAWS; RELAXATION;
D O I
10.1007/s10915-017-0499-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Implicit-explicit (IMEX) Runge-Kutta (RK) schemes are popular high order time discretization methods for solving stiff kinetic equations. As opposed to the compressible Euler limit (leading order asymptotics of the Boltzmann equation as the Knudsen number goes to zero), their asymptotic behavior at the Navier-Stokes (NS) level (next order asymptotics) was rarely studied. In this paper, we analyze a class of existing IMEX RK schemes and show that, under suitable initial conditions, they can capture the NS limit without resolving the small parameter , i.e., , , where m is the order of the explicit RK part in the IMEX scheme. Extensive numerical tests for BGK and ES-BGK models are performed to verify our theoretical results.
引用
收藏
页码:797 / 818
页数:22
相关论文
共 50 条
  • [1] On a Class of Implicit–Explicit Runge–Kutta Schemes for Stiff Kinetic Equations Preserving the Navier–Stokes Limit
    Jingwei Hu
    Xiangxiong Zhang
    [J]. Journal of Scientific Computing, 2017, 73 : 797 - 818
  • [2] IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR HYPERBOLIC SYSTEMS AND KINETIC EQUATIONS IN THE DIFFUSION LIMIT
    Boscarino, S.
    Pareschi, L.
    Russo, G.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : A22 - A51
  • [3] Semi-implicit Runge-Kutta schemes for the Navier-Stokes equations
    Sterner, E
    [J]. BIT, 1997, 37 (01): : 164 - 178
  • [4] Semi-implicit Runge-Kutta schemes for the Navier-Stokes equations
    E. Sterner
    [J]. BIT Numerical Mathematics, 1997, 37 : 164 - 178
  • [5] ASYMPTOTIC PRESERVING IMPLICIT-EXPLICIT RUNGE-KUTTA METHODS FOR NONLINEAR KINETIC EQUATIONS
    Dimarco, Giacomo
    Pareschi, Lorenzo
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 1064 - 1087
  • [6] Accelerated implicit-explicit Runge-Kutta schemes for locally stiff systems
    Vermeire, Brian C.
    Nasab, Siavash Hedayati
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 429
  • [7] Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems in the Diffusion Limit
    Boscarino, S.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [8] IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR HYPERBOLIC SYSTEMS WITH STIFF RELAXATION AND APPLICATIONS
    Boscarino, Sebastiano
    Russo, Giovanni
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 61 - 80
  • [9] Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations
    Kennedy, CA
    Carpenter, MH
    Lewis, RM
    [J]. APPLIED NUMERICAL MATHEMATICS, 2000, 35 (03) : 177 - 219
  • [10] Implicit-explicit Runge-Kutta methods for stiff combustion problems
    Lindblad, E.
    Valiev, D. M.
    Muller, B.
    Rantakokko, J.
    Lotstedt, P.
    Liberman, M. A.
    [J]. SHOCK WAVES, VOL 1, PROCEEDINGS, 2009, : 299 - +