ASSISTED DICTIONARY LEARNING FOR FMRI DATA ANALYSIS

被引:0
|
作者
Moreno, Manuel Morante [1 ,2 ]
Kopsinis, Yannis [2 ,3 ]
Kofidis, Eleftherios [2 ,4 ]
Chatzichristos, Christos [1 ,2 ]
Theodoridis, Sergios [1 ,2 ,5 ]
机构
[1] Univ Athens, Dept Informat & Telecommun, Athens, Greece
[2] Comp Technol Inst & Press Diophantus CTI, Patras, Greece
[3] LIBRA MLI Ltd, Edinburgh, Midlothian, Scotland
[4] Univ Piraeus, Dept Stat & Insurance Sci, Piraeus, Greece
[5] Natl Observ Athens, IAASARS, GR-15236 Penteli, Greece
基金
欧盟地平线“2020”;
关键词
fMRI Data Analysis; Dictionary Learning; Blind Source Separation; INDEPENDENT COMPONENT ANALYSIS; BOLD HEMODYNAMIC-RESPONSES; FUNCTIONAL CONNECTIVITY; VARIABILITY; SEPARATION; SIMULATION; TOOLBOX; ICA;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Extracting information from functional magnetic resonance images (fMRI) has been a major area of research for more than two decades. The goal of this work is to present a new method for the analysis of fMRI data sets, that is capable to incorporate a priori available information, via an efficient optimization framework. Tests on synthetic data sets demonstrate significant performance gains over existing methods of this kind.
引用
收藏
页码:806 / 810
页数:5
相关论文
共 50 条
  • [21] CSMSDL: A COMMON SEQUENTIAL DICTIONARY LEARNING ALGORITHM FOR MULTI-SUBJECT FMRI DATA SETS ANALYSIS
    Seghouane, Abd-Krim
    Iqbal, Asif
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4113 - 4117
  • [22] CONSTRAINED MAXIMUM LIKELIHOOD BASED EFFICIENT DICTIONARY LEARNING FOR fMRI ANALYSIS
    Khalid, Muhammad Usman
    Seghouane, Abd-Krim
    2014 IEEE 11TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2014, : 45 - 48
  • [23] Joint fMRI Analysis and Subject Clustering Using Sparse Dictionary Learning
    Kim, Seung-Jun
    Dontaraju, Krishna K.
    WAVELETS AND SPARSITY XVII, 2017, 10394
  • [24] Analysis of fMRI data based on sparsity of source components in signal dictionary
    Feng, Bao
    Yu, Zhu Liang
    Gu, Zhenghui
    Li, Yuanqing
    NEUROCOMPUTING, 2015, 156 : 86 - 95
  • [25] Experimental Comparisons of Sparse Dictionary Learning and Independent Component Analysis for Brain Network Inference From fMRI Data
    Zhang, Wei
    Lv, Jinglei
    Li, Xiang
    Zhu, Dajiang
    Jiang, Xi
    Zhang, Shu
    Zhao, Yu
    Guo, Lei
    Ye, Jieping
    Hu, Dewen
    Liu, Tianming
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (01) : 289 - 299
  • [26] A Weighted Discriminative Dictionary Learning Method for Depression Disorder Classification using fMRI Data
    Wang, Xin
    Ren, Yanshuang
    Yang, Yehui
    Zhang, Wensheng
    Xiong, Neal N.
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCES ON BIG DATA AND CLOUD COMPUTING (BDCLOUD 2016) SOCIAL COMPUTING AND NETWORKING (SOCIALCOM 2016) SUSTAINABLE COMPUTING AND COMMUNICATIONS (SUSTAINCOM 2016) (BDCLOUD-SOCIALCOM-SUSTAINCOM 2016), 2016, : 618 - 623
  • [27] Learning using structured data: Application to fMRI data analysis
    Liang, Lichen
    Cherkassky, Vladimir
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 495 - +
  • [28] UNSUPERVISED DETRENDING TECHNIQUE USING SPARSE DICTIONARY LEARNING FOR fMRI PREPROCESSING AND ANALYSIS
    Khalid, Muhammad Usman
    Seghouane, Abd-Krim
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 917 - 921
  • [29] Learning Representation for fMRI Data Analysis using Autoencoder
    Kamonsantiroj, Suwatchai
    Charoenvorakiat, Parinya
    Pipanmaekaporn, Luepol
    PROCEEDINGS 2016 5TH IIAI INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS IIAI-AAI 2016, 2016, : 560 - 565
  • [30] Robust Subject-Wise Dictionary Learning for fMRI
    Khalid, Muhammad Usman
    Albahlal, Bader M.
    IEEE ACCESS, 2024, 12 : 35957 - 35971