Text Mining and Recommender Systems for Predictive Policing

被引:1
|
作者
Percy, Isabelle [1 ]
Balinsky, Alexander [1 ]
Balinsky, Helen [2 ]
Simske, Steve [3 ]
机构
[1] Cardiff Univ, Cardiff Sch Math, Cardiff, S Glam, Wales
[2] Hewlett Packard Labs, Bristol, Avon, England
[3] Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA
来源
PROCEEDINGS OF THE ACM SYMPOSIUM ON DOCUMENT ENGINEERING (DOCENG 2018) | 2018年
基金
英国工程与自然科学研究理事会;
关键词
Measure of similarity; TF-IDF; clustering; affinity propagation; silhouette score;
D O I
10.1145/3209280.3229112
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present some results from a joint project between HP Labs, Cardiff University and Dyfed Powys Police on predictive policing. Applications of the various techniques from recommender systems and text mining to the problem of crime patterns recognition are demonstrated. Our main idea is to consider crime records for different regions and time period as a corpus of text documents with words being crime types. We apply tools from NLP and text documents classifications to analyse different regions in time and space. We evaluate performance of several measures of similarity for texts and documents clustering algorithms.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Educational Data Mining Rule based Recommender Systems
    Mobasher, Ghadeer
    Shawish, Ahmed
    Ibrahim, Osman
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED EDUCATION (CSEDU), VOL 1, 2017, : 292 - 299
  • [22] Mining unstructured content for recommender systems: an ensemble approach
    Manzato, Marcelo G.
    Domingues, Marcos A.
    Fortes, Arthur C.
    Sundermann, Camila V.
    D'Addio, Rafael M.
    Conrado, Merley S.
    Rezende, Solange O.
    Pimentel, Maria G. C.
    INFORMATION RETRIEVAL JOURNAL, 2016, 19 (04): : 378 - 415
  • [23] Mining unstructured content for recommender systems: an ensemble approach
    Marcelo G. Manzato
    Marcos A. Domingues
    Arthur C. Fortes
    Camila V. Sundermann
    Rafael M. D’Addio
    Merley S. Conrado
    Solange O. Rezende
    Maria G. C. Pimentel
    Information Retrieval Journal, 2016, 19 : 378 - 415
  • [24] Integrated Recommender Systems Based on Ontology and Usage Mining
    Wei, Liang
    Lei, Song
    ACTIVE MEDIA TECHNOLOGY, PROCEEDINGS, 2009, 5820 : 114 - 125
  • [25] Novel Recommender Systems Using Personalized Sentiment Mining
    Govind, B. S. Sachin
    Tene, Ramakrishnudu
    Saideep, K. Laksuni
    2018 IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES (CONECCT), 2018,
  • [26] Mining and representing recommendations in actively evolving recommender systems
    Assent, Ira
    2010 IEEE 26TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDE 2010), 2010, : 282 - 285
  • [27] Informed recommender agent: Utilizing consumer product reviews through text mining
    Aciar, Silvana
    Zhang, Debbie
    Simoff, Simeon
    Debenham, John
    2006 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY, WORKSHOPS PROCEEDINGS, 2006, : 37 - +
  • [28] Predictive Policing
    Belina, Bernd
    MONATSSCHRIFT FUR KRIMINOLOGIE UND STRAFRECHTSREFORM, 2016, 99 (02): : 85 - 100
  • [29] Predictive Policing
    Povalej R.
    Volkmann D.
    Informatik-Spektrum, 2021, 44 (01) : 57 - 61
  • [30] A Comparative Analysis of Text-Based Explainable Recommender Systems
    Ariza-Casabona, Alejandro
    Boratto, Ludovico
    Salamo, Maria
    PROCEEDINGS OF THE EIGHTEENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2024, 2024, : 105 - 115