Thermal Hall effect in noncollinear coplanar insulating antiferromagnets

被引:61
|
作者
Mook, Alexander [1 ]
Henk, Juergen [1 ]
Mertig, Ingrid [1 ,2 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Saale, Germany
[2] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Saale, Germany
关键词
SPACE-TIME SYMMETRY; TRANSPORT-COEFFICIENTS; SPIN EXCITATIONS; BERRY-PHASE; EDGE STATES; RESTRICTIONS;
D O I
10.1103/PhysRevB.99.014427
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We establish theoretically a thermal Hall effect of collective magnetic excitations in noncollinear but coplanar antiferromagnets. In agreement with superordinate symmetry arguments for linear transport tensors, our findings demonstrate that neither a ferromagnetic moment, nor a magnetic field, nor a scalar spin chirality are indispensable for a magnon thermal Hall effect. Similar to the electronic anomalous Hall effect, the two necessary requirements are broken effective time-reversal symmetry and a magnetic point group compatible with ferromagnetism. As an example, we construct a minimal model for an antiferromagnet on the kagome lattice with the coplanar negative vector chiral order. In the presence of in-plane Dzyaloshinskii-Moriya interactions, the coplanar order stays intact but both magnon band gaps and a nonzero Berry curvature develop. This coplanar magnet realizes an antiferromagnetic magnon Chern insulator with a nonzero thermal Hall effect. We propose cadmium kapellasite CdCu3(OH)(6)(NO3)(2)center dot H2O as an approximate material realization.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Multiple Valley Modulations in Noncollinear Antiferromagnets
    Zhou, Zhichao
    Wang, Huiqian
    Li, Xiao
    NANO LETTERS, 2024, 24 (37) : 11497 - 11503
  • [22] Thermal Hall conductivity on kagome-lattice antiferromagnets
    Lima, L. S.
    SOLID STATE COMMUNICATIONS, 2024, 377
  • [23] Magnon Hall conductivity and thermal transport in frustrated antiferromagnets
    Lima, Leonardo S.
    Cantuaria, E. B.
    Diniz, G. M.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2019, 559 : 50 - 54
  • [24] Topological thermal Hall effect driven by spin-chirality fluctuations in frustrated antiferromagnets
    Lu, Yalei
    Guo, Xing
    Koval, Vladimir
    Jia, Chenglong
    PHYSICAL REVIEW B, 2019, 99 (05)
  • [25] Cluster multipole dynamics in noncollinear antiferromagnets
    Nomoto, Takuya
    Arita, Ryotaro
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [26] Topological magnetoelastic excitations in noncollinear antiferromagnets
    Park, Sungjoon
    Yang, Bohm-Jung
    PHYSICAL REVIEW B, 2019, 99 (17)
  • [27] Acoustomagnonic Spin Hall Effect in Honeycomb Antiferromagnets
    Sano, Ryotaro
    Ominato, Yuya
    Matsuo, Mamoru
    PHYSICAL REVIEW LETTERS, 2024, 132 (23)
  • [28] The chiral Hall effect in canted ferromagnets and antiferromagnets
    Jonathan Kipp
    Kartik Samanta
    Fabian R. Lux
    Maximilian Merte
    Dongwook Go
    Jan-Philipp Hanke
    Matthias Redies
    Frank Freimuth
    Stefan Blügel
    Marjana Ležaić
    Yuriy Mokrousov
    Communications Physics, 4
  • [29] Anomalous Hall effect in κ-type organic antiferromagnets
    Naka, Makoto
    Hayami, Satoru
    Kusunose, Hiroaki
    Yanagi, Yuki
    Motome, Yukitoshi
    Seo, Hitoshi
    PHYSICAL REVIEW B, 2020, 102 (07)
  • [30] The chiral Hall effect in canted ferromagnets and antiferromagnets
    Kipp, Jonathan
    Samanta, Kartik
    Lux, Fabian R.
    Merte, Maximilian
    Go, Dongwook
    Hanke, Jan-Philipp
    Redies, Matthias
    Freimuth, Frank
    Bluegel, Stefan
    Lezaic, Marjana
    Mokrousov, Yuriy
    COMMUNICATIONS PHYSICS, 2021, 4 (01)