Electrochemical Structure of the Plasma-Liquid Interface

被引:10
|
作者
Oldham, Trey [1 ]
Thimsen, Elijah [1 ,2 ]
机构
[1] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA
[2] Washington Univ, Inst Mat Sci & Engn, St Louis, MO 63130 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2022年 / 126卷 / 02期
基金
美国国家科学基金会;
关键词
NANOPARTICLES; DISCHARGE;
D O I
10.1021/acs.jpcc.1c09650
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nonthermal atmospheric pressure plasma in contact with a liquid yields a variety of energetic photons, ions, and electrons, which can be transported into the plasma-liquid interface (PLI). Similar to the electrochemical interface formed between a solid electrode and electrolyte in conventional electrochemical systems, the charge-transfer process across the PLI is able to promote reduction-oxidation (redox) reactions. However, in the case of free plasma jets in contact with liquids, the absence of solid electrodes obscures the spatial locations of the electrochemical half-reactions. Herein, we present a spatial electrochemical measurement technique used to characterize an aqueous solution in contact with an atmospheric pressure plasma jet. The technique is based on measuring the potential difference between two identical Ag/AgCl electrochemical electrodes positioned at different locations within the solution. More specifically, electrochemical maps were made by measuring the potential of one electrochemical electrode positioned at different locations near the PLI with respect to the other electrochemical electrode positioned far away from the PLI in the bulk solution. Regions in the map with negative and positive potential differences between these electrochemical electrodes were used to identify the electrodeless cathode and anode, respectively. Visualization of the spatial distribution of molecular colorimetric redox indicators by multispectral imaging revealed that reduction was occurring near the plasma jet centerline while oxidation was occurring further away in solution, which constitutes an independent confirmation of the electrochemical maps.
引用
收藏
页码:1222 / 1229
页数:8
相关论文
共 50 条
  • [11] MECHANISM OF SILVER NANOPARICLES PRODUCTION AT THE PLASMA-LIQUID INTERFACE
    Santosh, V. S.
    Kondeti, K.
    Gangal, Urvashi
    Bmggeman, Peter J.
    2016 43RD IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE (ICOPS), 2016,
  • [12] Plasma-liquid interactions
    Bruggeman P.J.
    Bogaerts A.
    Pouvesle J.M.
    Robert E.
    Szili E.J.
    1600, American Institute of Physics Inc. (130):
  • [13] The penetration and concentration of solvated electrons and hydroxyl radicals at a plasma-liquid interface
    Rumbach, Paul
    Bartels, David M.
    Go, David B.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2018, 27 (11):
  • [14] A Commentary on the Plasma-Liquid Interactions
    Patel, J.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 18 (05) : 1301 - 1308
  • [15] Plasma reforming of liquid hydrocarbon in plasma-liquid systems
    Chernyak, Valeriy
    Nedybaliuk, Oleg
    Martysh, Evgen
    Olszewski, Sergij
    Solomenko, Olena
    Shchedrin, Anatolij
    Levko, Dmytro
    Demchina, Valentyna
    Kudryavzev, Volodymyr
    NUKLEONIKA, 2012, 57 (02) : 301 - 305
  • [16] Application of a Film Model to Mass Transfer and Chemical Reaction at a Plasma-Liquid Interface
    Peyres, Sean M.
    Wang, Jian
    Hollyfield, Drew W.
    Abuyazid, Nabiel H.
    Sankaran, R. Mohan
    Uner, Necip B.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (11)
  • [17] Understanding the influence of fluid flow regime on plasma morphology and dose delivery at the plasma-liquid interface
    Walker, R. Z.
    Foster, J. E.
    JOURNAL OF APPLIED PHYSICS, 2023, 133 (09)
  • [18] Experimental confirmation of solvated electron concentration and penetration scaling at a plasma-liquid interface
    Martin, Daniel C.
    Bartels, David M.
    Rumbach, Paul
    Go, David B.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2021, 30 (03):
  • [19] Plasma-liquid interactions: a review and roadmap
    Bruggeman, P. J.
    Kushner, M. J.
    Locke, B. R.
    Gardeniers, J. G. E.
    Graham, W. G.
    Graves, D. B.
    Hofman-Caris, R. C. H. M.
    Maric, D.
    Reid, J. P.
    Ceriani, E.
    Rivas, D. Fernandez
    Foster, J. E.
    Garrick, S. C.
    Gorbanev, Y.
    Hamaguchi, S.
    Iza, F.
    Jablonowski, H.
    Klimova, E.
    Kolb, J.
    Krcma, F.
    Lukes, P.
    Machala, Z.
    Marinov, I.
    Mariotti, D.
    Thagard, S. Mededovic
    Minakata, D.
    Neyts, E. C.
    Pawlat, J.
    Petrovic, Z. Lj
    Pflieger, R.
    Reuter, S.
    Schram, D. C.
    Schroter, S.
    Shiraiwa, M.
    Tarabova, B.
    Tsai, P. A.
    Verlet, J. R. R.
    von Woedtke, T.
    Wilson, K. R.
    Yasui, K.
    Zvereva, G.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05):
  • [20] 2-D Bubble Test Cell for the Study of Interactions at the Plasma-Liquid Interface
    Foster, John E.
    Lai, Janis
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2016, 44 (07) : 1127 - 1136