Theory of slow-light solitons

被引:21
|
作者
Rybin, AV
Vadeiko, IP
Bishop, AR
机构
[1] Univ Jyvaskyla, Dept Phys, FIN-40351 Jyvaskyla, Finland
[2] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 02期
关键词
D O I
10.1103/PhysRevE.72.026613
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the framework of the nonlinear Lambda model we investigate propagation of solitons in atomic vapors and Bose-Einstein condensates. We show how the complicated nonlinear interplay between fast solitons and slow-light solitons in the Lambda-type media points to the possibility to create optical gates and, thus, to control the optical transparency of the Lambda-type media. We provide an exact analytic description of decelerating, stopping and reaccelerating of slow-light solitons in atomic media in the nonadiabatic regime. Dynamical control over slow-light solitons is realized via a controlling field generated by an auxiliary laser. For a rather general time dependence of the field; we find the dynamics of the slow-light soliton inside the medium. We provide an analytical description for the nonlinear dependence of the velocity of the signal on the controlling field. If the background field is turned off at some moment of time, the signal stops. We find the location and shape of the spatially localized memory bit imprinted into the medium. We discuss physically interesting features of our solution, which are in a good agreement with recent experiments.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Mathematical theory of slow light optical solitons
    Biswas, Anjan
    Pati, Gour S.
    WAVES IN RANDOM AND COMPLEX MEDIA, 2011, 21 (03) : 456 - 468
  • [22] Slow-light solitons in three-level atomic systems modified by a microwave field
    L. Li
    G. X. Huang
    The European Physical Journal D, 2010, 58 : 339 - 348
  • [23] Slow-light solitons in three-level atomic systems modified by a microwave field
    Li, L.
    Huang, G. X.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 58 (03): : 339 - 348
  • [24] Slow-Light Frequency Combs and Dissipative Kerr Solitons in Coupled-Cavity Waveguides
    Vasco, J. P.
    Savona, V
    PHYSICAL REVIEW APPLIED, 2019, 12 (06):
  • [25] Dynamics of slow-light formation
    Cerboneschi, E
    Renzoni, F
    Arimondo, E
    OPTICS COMMUNICATIONS, 2002, 208 (1-3) : 125 - 130
  • [26] Ultrahigh sensitivity of slow-light gyroscope
    Leonhardt, U
    Piwnicki, P
    PHYSICAL REVIEW A, 2000, 62 (05): : 055801 - 055801
  • [27] Slow-light soliton beam splitters
    Shou, Chong
    Huang, Guoxiang
    PHYSICAL REVIEW A, 2019, 99 (04)
  • [28] Development of a slow-light spectrometer on a chip
    Murugkar, Sangeeta
    De Leon, Israel
    Shi, Zhimin
    Lopez-Galmiche, Gisela
    Salvail, Jeff
    Ma, Edwin
    Gao, Boshen
    Liapis, Andreas C.
    Vornehm, Joseph E.
    Boyd, Robert W.
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XVI, 2012, 8264
  • [29] Slow-light vortices in periodic waveguides
    Sukhorukov, Andrey A.
    Ha, Sangwoo
    Desyatnikov, Anton S.
    Lavrinenko, Andrei V.
    Kivshar, Yuri S.
    ADVANCES IN SLOW AND FAST LIGHT II, 2009, 7226
  • [30] Slow-Light Enhanced Spectrometers on Chip
    Shi, Zhimin
    Boyd, Robert W.
    PHOTONICS NORTH 2011, 2011, 8007