Finite element methods for optimal control problems governed by integral equations and integro-differential equations

被引:34
|
作者
Brunner, H [1 ]
Yan, NN
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China
关键词
D O I
10.1007/s00211-005-0608-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze finite-element Galerkin discretizations for a class of constrained optimal control problems that are governed by Fredholm integral or integro-differential equations. The analysis focuses on the derivation of a priori error estimates and a posteriori error estimators for the approximation schemes.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [41] COLLOCATION METHODS FOR INTEGRO-DIFFERENTIAL EQUATIONS
    HANGELBROEK, RJ
    KAPER, HG
    LEAF, GK
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (03) : 377 - 390
  • [42] On the Ulam stabilities of nonlinear integral equations and integro-differential equations
    Tunc, Osman
    Tunc, Cemil
    Petrusel, Gabriela
    Yao, Jen-Chih
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (06) : 4014 - 4028
  • [43] Optimal order spline methods for nonlinear differential and integro-differential equations
    Ganesh, M
    Sloan, IH
    APPLIED NUMERICAL MATHEMATICS, 1999, 29 (04) : 445 - 478
  • [44] Integro-differential equations and operational methods
    Dattoli, G
    Pacciani, P
    Ricci, PE
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2004, 119 (04): : 373 - 380
  • [45] ON CERTAIN VOLTERRA INTEGRAL AND INTEGRO-DIFFERENTIAL EQUATIONS
    Pachpatte, B. G.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2008, 23 : 1 - 12
  • [46] Floquet theory for integral and integro-differential equations
    Belbas, S. A.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 223 : 327 - 345
  • [47] Reformulation of Volterra integral (integro-differential) equations
    Jumarhon, B
    Pidcock, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 565 - 566
  • [48] Weak Galerkin finite element methods for optimal control problems governed by second order elliptic equations
    Wang, Chunmei
    Wang, Junping
    Zhang, Shangyou
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 452
  • [49] INTEGRAL BOUNDARY VALUE PROBLEMS FOR FRACTIONAL ORDER INTEGRO-DIFFERENTIAL EQUATIONS
    Liu, Zhenhai
    Han, Jiangfeng
    DYNAMIC SYSTEMS AND APPLICATIONS, 2012, 21 (04): : 535 - 547
  • [50] CHEBYSHEV SOLUTION OF DIFFERENTIAL, INTEGRAL AND INTEGRO-DIFFERENTIAL EQUATIONS
    ELGENDI, SE
    COMPUTER JOURNAL, 1969, 12 (03): : 282 - &