Boundedness of Riesz potentials in nonhomogeneous spaces

被引:0
|
作者
Hu Guoen [1 ]
Meng Yan [2 ]
Yang Dachun
机构
[1] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Renmin Univ China, Sch Informat, Beijing 100872, Peoples R China
关键词
Riesz potential; Lebesgue space; Hardy space; RBMO space; boundedness; non-doubling measure;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a class of linear operators including Riesz potentials on R(d) with a non-negative Radon measure mu, which only satisfies some growth condition, the authors prove that their boundedness in Lebesgue spaces is equivalent to their boundedness in the Hardy space or certain weak type endpoint estimates, respectively. As an application, the authors obtain several new end estimates.
引用
收藏
页码:371 / 382
页数:12
相关论文
共 50 条
  • [1] BOUNDEDNESS OF RIESZ POTENTIALS IN NONHOMOGENEOUS SPACES
    胡国恩
    孟岩
    杨大春
    Acta Mathematica Scientia, 2008, (02) : 371 - 382
  • [2] BOUNDEDNESS OF GENERALIZED RIESZ POTENTIALS ON THE VARIABLE HARDY SPACES
    Rocha, Pablo
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 104 (02) : 255 - 273
  • [3] BOUNDEDNESS OF GENERALIZED RIESZ POTENTIALS ON SPACES OF HOMOGENEOUS TYPE
    Liu, Liguang
    Yang, Dachun
    Zhou, Yuan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (04): : 867 - 885
  • [4] SPACES OF RIESZ POTENTIALS
    SAMKO, SG
    MATHEMATICS OF THE USSR-IZVESTIYA, 1976, 10 (05): : 1089 - 1117
  • [5] Boundedness of the Riesz projection on spaces with weights
    Abbott, SD
    Marinov, I
    PACIFIC JOURNAL OF MATHEMATICS, 2001, 198 (02) : 257 - 264
  • [6] SPACES OF RIESZ POTENTIALS
    TORCHINS.A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (06): : A578 - A579
  • [7] Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2010, 62 (03) : 707 - 744
  • [8] A UNIFIED POINT OF VIEW ON BOUNDEDNESS OF RIESZ TYPE POTENTIALS
    Iaffei, Bibiana
    Nitti, Liliana
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2018, 59 (01): : 99 - 121
  • [9] On the (p, q)-boundedness of nonisotropic spherical Riesz potentials
    Sarikaya, Mehmet Zeki
    Yildirim, Hueseyin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2007, 2007 (1)
  • [10] The Boundedness of Bessel-Riesz Operators On Morrey Spaces
    Idris, Mochammad
    Gunawan, Hendra
    Lindiarni, Janny
    Eridani
    INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2015 (ISCPMS 2015), 2016, 1729