Scaling behavior of diffusion limited annihilation reactions on random media

被引:6
|
作者
deAlbuquerque, EL
Lyra, ML
机构
[1] Departamento de Física, Universidade Federal de Alagoas
来源
JOURNAL OF CHEMICAL PHYSICS | 1996年 / 105卷 / 14期
关键词
D O I
10.1063/1.472452
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate numerically the kinetics of diffusion limited annihilation reactions in disordered binary square lattices where the reacting particles are constrained to diffuse on a concentration of the lattice sites. We find that the asymptotic decay of the particle concentration in the percolative regime is of the form c(t,p)-c(r)(p) alpha t(-ds/2), where c(r)(p) is the concentration of residual particles. We recover well known results such as d(s)(p>p(c))=d=2 with logarithmic corrections, and d(s)(p(c))=1.34+/-0.02. For p<p(c) we employ a scaling theory and collapse the data onto a universal form dc/dt=tau(-(ds(pc)/2+1))f(t/tau), With tau being a characteristic diffusion time and f(t/tau) representing the crossover from a power law decay to a stretched exponential one. We relate the present results with the kinetics of the excitation reaction (triplet + triplet -> singlet) on isotopic mixed crystals of naphthalene. (C) 1996 American Institute of Physics.
引用
收藏
页码:5945 / 5948
页数:4
相关论文
共 50 条
  • [21] Diffusion limited reactions
    Goldstein, Byron
    Levine, Harold
    Torney, David
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (04) : 1147 - 1165
  • [22] Diffusion-limited annihilation in inhomogeneous environments
    Schutz, GM
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 104 (03): : 583 - 590
  • [23] Note: Diffusion-limited annihilation in cavities
    Dagdug, Leonardo
    Berezhkovskii, Alexander M.
    Zitserman, Vladimir Yu.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24):
  • [24] REPLICA-SCALING ANALYSIS OF DIFFUSION IN QUENCHED CORRELATED RANDOM-MEDIA
    KOLOMEISKY, AB
    KOLOMEISKY, EB
    PHYSICAL REVIEW A, 1992, 45 (08): : R5327 - R5330
  • [25] Scaling to RVE in Random Media
    Ostoja-Starzewski, M.
    Kale, S.
    Karimi, P.
    Malyarenko, A.
    Raghavan, B.
    Ranganathan, S. I.
    Zhang, J.
    ADVANCES IN APPLIED MECHANICS, VOL 49, 2016, 49 : 111 - 211
  • [26] Scaling in the Diffusion Limited Aggregation Model
    Menshutin, Anton
    PHYSICAL REVIEW LETTERS, 2012, 108 (01)
  • [27] Dynamic scaling of diffusion-limited reactions over fractal surfaces: computer simulation
    Yan, CC
    Chaudhari, A
    Lee, SL
    APPLIED SURFACE SCIENCE, 2002, 196 (1-4) : 375 - 382
  • [28] Active diffusion limited reactions
    Debnath, Tanwi
    Ghosh, Pulak K.
    Li, Yunyun
    Marchesoni, Fabio
    Nori, Franco
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (15):
  • [29] Segregation in diffusion-limited multispecies pair annihilation
    Hilhorst, HJ
    Deloubrière, O
    Washenberger, MJ
    Täuber, UC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (28): : 7063 - 7093
  • [30] Diffusion-limited annihilation and the reunion of bounded walkers
    de Oliveira, MJ
    BRAZILIAN JOURNAL OF PHYSICS, 2000, 30 (01) : 128 - 132