FULLY AUTOMATED MYOCARDIAL STRAIN ESTIMATION FROM CINE MRI USING CONVOLUTIONAL NEURAL NETWORKS

被引:0
|
作者
Puyol-Anton, Esther [1 ]
Ruijsink, Bram [1 ,3 ]
Bai, Wenjia [4 ]
Langet, Helene [2 ]
De Craene, Mathieu [2 ]
Schnabel, Julia A. [1 ]
Piro, Paolo [2 ]
King, Andrew P. [1 ]
Sinclair, Matthew [4 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[2] Medisys, Philips Res, Paris, France
[3] Guys & St Thomas Hosp NHS Fdn Trust, London, England
[4] Imperial Coll London, Dept Comp, Biomed Image Anal Grp, London, England
基金
英国工程与自然科学研究理事会;
关键词
Myocardial Strain; Automatic pipeline; Machine learning; MRI;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cardiovascular magnetic resonance myocardial feature tracking (CMR-FT) is a promising method for quantification of cardiac function from standard steady-state free precession (SSFP) images. However, currently available techniques require operator dependent and time-consuming manual intervention, limiting reproducibility and clinical use. In this paper, we propose a fully automated pipeline to compute left ventricular (LV) longitudinal and radial strain from 2- and 4-chamber cine acquisitions, and LV circumferential and radial strain from the short-axis imaging. The method employs a convolutional neural network to automatically segment the myocardium, followed by feature tracking and strain estimation. Experiments are performed using 40 healthy volunteers and 40 ischemic patients from the UK Biobank dataset. Results show that our method obtained strain values that were in excellent agreement with the commercially available clinical CMR-FT software CVI42 (Circle Cardiovascular Imaging, Calgary, Canada).
引用
下载
收藏
页码:1139 / 1143
页数:5
相关论文
共 50 条
  • [31] Automated glioma grading on conventional MRI images using deep convolutional neural networks
    Zhuge, Ying
    Ning, Holly
    Mathen, Peter
    Cheng, Jason Y.
    Krauze, Andra V.
    Camphausen, Kevin
    Miller, Robert W.
    MEDICAL PHYSICS, 2020, 47 (07) : 3044 - 3053
  • [32] Segmentation of Left Ventricle Myocardium in Porcine Cardiac Cine MR Images Using a Hybrid of Fully Convolutional Neural Networks and Convolutional LSTM
    Zhang, Dongqing
    Icke, Ilknur
    Dogdas, Belma
    Parimal, Sarayu
    Sampath, Smita
    Forbes, Joseph
    Bagchi, Ansuman
    Chin, Chih-Liang
    Chen, Antong
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [33] Automated Rough Line Edge Estimation from SEM Images using Deep Convolutional Neural Networks
    Chaudhary, Narendra
    Savari, Serap A.
    Yeddulapalli, S. S.
    PHOTOMASK TECHNOLOGY 2018, 2018, 10810
  • [34] Microaneurysm detection using fully convolutional neural networks
    Chudzik, Piotr
    Majumdar, Somshubra
    Caliva, Francesco
    Al-Diri, Bashir
    Hunter, Andrew
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 158 : 185 - 192
  • [35] Actionness Estimation Using Hybrid Fully Convolutional Networks
    Wang, Limin
    Qiao, Yu
    Tang, Xiaoou
    Goo, Luc Van
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2708 - 2717
  • [36] On Hierarchical Brain Tumor Segmentation in MRI Using Fully Convolutional Neural Networks: A Preliminary Study
    Pereira, Sergio
    Oliveira, Americo
    Alves, Victor
    Silva, Carlos A.
    2017 IEEE 5TH PORTUGUESE MEETING ON BIOENGINEERING (ENBENG), 2017,
  • [37] Automated Left and Right Chamber Segmentation in Cardiac MRI Using Dense Fully Convolutional Neural Network
    Penso, Marco
    Moccia, Sara
    Scafuri, Stefano
    Muscogiuri, Giuseppe
    Pontone, Gianluca
    Pepi, Mauro
    Caiani, Enrico Gianluca
    2020 COMPUTING IN CARDIOLOGY, 2020,
  • [38] Automated depression analysis using convolutional neural networks from speech
    He, Lang
    Cao, Cui
    JOURNAL OF BIOMEDICAL INFORMATICS, 2018, 83 : 103 - 111
  • [39] Brain MRI Segmentation using efficient 3D Fully Convolutional Neural Networks
    Khan, Ghazala
    Khan, Naimul Mefraz
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 2351 - 2356
  • [40] Automated myocardial segmentation of extra-cellular volume mapping cardiac magnetic resonance images using fully convolutional neural networks
    Farrag, Nadia A.
    Bhagavan, Sathvik
    Sebben, David
    Ruwanpura, Poojani
    White, James A.
    Ukwatta, Eranga
    MEDICAL IMAGING 2022: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2022, 12036