FULLY AUTOMATED MYOCARDIAL STRAIN ESTIMATION FROM CINE MRI USING CONVOLUTIONAL NEURAL NETWORKS

被引:0
|
作者
Puyol-Anton, Esther [1 ]
Ruijsink, Bram [1 ,3 ]
Bai, Wenjia [4 ]
Langet, Helene [2 ]
De Craene, Mathieu [2 ]
Schnabel, Julia A. [1 ]
Piro, Paolo [2 ]
King, Andrew P. [1 ]
Sinclair, Matthew [4 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[2] Medisys, Philips Res, Paris, France
[3] Guys & St Thomas Hosp NHS Fdn Trust, London, England
[4] Imperial Coll London, Dept Comp, Biomed Image Anal Grp, London, England
基金
英国工程与自然科学研究理事会;
关键词
Myocardial Strain; Automatic pipeline; Machine learning; MRI;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cardiovascular magnetic resonance myocardial feature tracking (CMR-FT) is a promising method for quantification of cardiac function from standard steady-state free precession (SSFP) images. However, currently available techniques require operator dependent and time-consuming manual intervention, limiting reproducibility and clinical use. In this paper, we propose a fully automated pipeline to compute left ventricular (LV) longitudinal and radial strain from 2- and 4-chamber cine acquisitions, and LV circumferential and radial strain from the short-axis imaging. The method employs a convolutional neural network to automatically segment the myocardium, followed by feature tracking and strain estimation. Experiments are performed using 40 healthy volunteers and 40 ischemic patients from the UK Biobank dataset. Results show that our method obtained strain values that were in excellent agreement with the commercially available clinical CMR-FT software CVI42 (Circle Cardiovascular Imaging, Calgary, Canada).
引用
收藏
页码:1139 / 1143
页数:5
相关论文
共 50 条
  • [1] Fully Automated Quantification of Cardiac Indices from Cine MRI Using a Combination of Convolution Neural Networks
    Pereira, Renato F.
    Rebelo, Marina S.
    Moreno, Ramon A.
    Marco, Anderson G.
    Lima, Daniel M.
    Arruda, Marcelo A. F.
    Krieger, Jose E.
    Gutierrez, Marco A.
    [J]. 42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1221 - 1224
  • [2] Fully Automated Myocardial T1 Quantification Using Fully Convolutional Neural Networks
    Fahmy, Ahmed S.
    El-Rewaidy, Hossam A.
    Nakamori, Shiro
    Nezafat, Reza
    [J]. CIRCULATION, 2018, 138
  • [3] Fully automated detection of breast cancer in screening MRI using convolutional neural networks
    Dalmis, Mehmet Ufuk
    Vreemann, Suzan
    Kooi, Thijs
    Mann, Ritse M.
    Karssemeijer, Nico
    Gubern-Merida, Albert
    [J]. JOURNAL OF MEDICAL IMAGING, 2018, 5 (01)
  • [4] Fully automated quantitative cephalometry using convolutional neural networks
    Arik S.Ö.
    Ibragimov B.
    Xing L.
    [J]. Journal of Medical Imaging, 2017, 4 (01)
  • [5] Estimation of Myocardial Strain and Contraction Phase From Cine MRI Using Variational Data Assimilation
    Tuyisenge, Viateur
    Sarry, Laurent
    Corpetti, Thomas
    Innorta-Coupez, Elisabeth
    Ouchchane, Lemlih
    Cassagnes, Lucie
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (02) : 442 - 455
  • [6] Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks
    Lorenzo, Pablo Ribalta
    Nalepa, Jakub
    Bobek-Billewicz, Barbara
    Wawrzyniak, Pawel
    Mrukwa, Grzegorz
    Kawulok, Michal
    Ulrych, Pawel
    Hayball, Michael R.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 176 : 135 - 148
  • [7] Fully automated carbonate petrography using deep convolutional neural networks
    Koeshidayatullah, Ardiansyah
    Morsilli, Michele
    Lehrmann, Daniel J.
    Al-Ramadan, Khalid
    Payne, Jonathan L.
    [J]. MARINE AND PETROLEUM GEOLOGY, 2020, 122 (122)
  • [8] Detecting and interpreting myocardial infarction using fully convolutional neural networks
    Strodthoff, Nils
    Strodthoff, Claas
    [J]. PHYSIOLOGICAL MEASUREMENT, 2019, 40 (01)
  • [9] Fully-Automated Segmentation of Nasopharyngeal Carcinoma on Dual-Sequence MRI Using Convolutional Neural Networks
    Ye, Yufeng
    Cai, Zongyou
    Huang, Bin
    He, Yan
    Zeng, Ping
    Zou, Guorong
    Deng, Wei
    Chen, Hanwei
    Huang, Bingsheng
    [J]. FRONTIERS IN ONCOLOGY, 2020, 10
  • [10] Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression
    Tan, Li Kuo
    McLaughlin, Robert A.
    Lim, Einly
    Aziz, Yang Faridah Abdul
    Liew, Yih Miin
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (01) : 140 - 152