Combining local-structure, fold-recognition, and new fold methods for protein structure prediction

被引:198
|
作者
Karplus, K [1 ]
Karchin, R [1 ]
Draper, J [1 ]
Casper, J [1 ]
Mandel-Gutfreund, Y [1 ]
Diekhans, M [1 ]
Hughey, R [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Comp Engn, Santa Cruz, CA 95064 USA
关键词
SAM-T02; UNDERTAKER; fragment-packing program; hidden Markov model; secondary structure;
D O I
10.1002/prot.10540
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This article presents an overview of the SAM-T02 method for protein fold recognition and the UNDERTAKER program for ab initio predictions. The SAM-T02 server is an automatic method that uses two-track hidden Markov models (HMMS) to find and align template proteins from PDB to the target protein. The two-track HMMs use an amino acid alphabet and one of several different local structure alphabets. The UNDERTAKER program is a new fragment-packing program that can use short or long fragments and alignments to create protein conformations. The HMMs and fold-recognition alignments from the SAM-T02 method were used to generate the fragment and alignment libraries used by UNDERTAKER. We present results on a few selected targets for which this combined method worked particularly well: T0129, T0181, T0135, T0130, and T0139. (C) 2003 Wiley-Liss, Inc.
引用
收藏
页码:491 / 496
页数:6
相关论文
共 50 条
  • [21] Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy
    Micsonai, Andras
    Wien, Frank
    Kernya, Linda
    Lee, Young-Ho
    Goto, Yuji
    Refregiers, Matthieu
    Kardos, Jozsef
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (24) : E3095 - E3103
  • [22] TertProt: A Protein Fold Recognition Method Using Protein Secondary Structure Program
    Kaladhar, D. S. V. G. K.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS 2012 (INDIA 2012), 2012, 132 : 161 - 168
  • [23] Vorescore-fold recognition improved by rescoring of protein structure models
    Csaba, Gergely
    Zimmer, Ralf
    BIOINFORMATICS, 2010, 26 (18) : i474 - i481
  • [24] Fast protein fold recognition and accurate sequence-structure alignment
    Zimmer, R
    Thiele, R
    BIOINFORMATICS, 1997, 1278 : 137 - 146
  • [25] ASTRO-FOLD 2.0: An enhanced framework for protein structure prediction
    Subramani, A.
    Wei, Y.
    Floudas, C. A.
    AICHE JOURNAL, 2012, 58 (05) : 1619 - 1637
  • [26] BeStSele: webserver for secondary structure and fold prediction for protein CD spectroscopy
    Micsonai, Andras
    Moussong, Eva
    Wien, Frank
    Boros, Eszter
    Vadaszi, Henrietta
    Murvai, Nikoletta
    Lee, Young-Ho
    Molnar, Tamas
    Refregiers, Matthieu
    Goto, Yuji
    Tantos, Agnes
    Kardos, Jozsef
    NUCLEIC ACIDS RESEARCH, 2022, 50 (W1) : W90 - W98
  • [27] The Structure of HasB Reveals a New Class of TonB Protein Fold
    de Amorim, Gisele Cardoso
    Prochnicka-Chalufour, Ada
    Delepelaire, Philippe
    Lefevre, Julien
    Simenel, Catherine
    Wandersman, Cecile
    Delepierre, Muriel
    Izadi-Pruneyre, Nadia
    PLOS ONE, 2013, 8 (03):
  • [28] Protein Fold Recognition with Adaptive Local Hyperplane Algorithm
    Kecman, Vojislav
    Yang, Tao
    CIBCB: 2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2009, : 75 - +
  • [29] Protein fold recognition by prediction-based threading
    Rost, B
    Schneider, R
    Sander, C
    JOURNAL OF MOLECULAR BIOLOGY, 1997, 270 (03) : 471 - 480
  • [30] A NEW CLASSIFIER FOR PROTEIN FOLD CLASS RECOGNITION
    Yanev, Nicola
    Traykov, Metodi
    Milanov, Peter
    Yurukov, Borislav
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2018, 71 (07): : 885 - 892