Estimating the number of components in a mixture of multilayer perceptrons

被引:5
|
作者
Olteanu, M. [1 ]
Rynkiewicz, J. [1 ]
机构
[1] Univ Paris 01, SAMOS MATISSE CES, UMR 8174, F-75013 Paris, France
关键词
penalized likelihood; Bayesian information criterion (BIC); mixture models; multilayer perceptrons;
D O I
10.1016/j.neucom.2007.12.022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bayesian information criterion (BIC) criterion is widely used by the neural-network community for model selection tasks, although its convergence properties are not always theoretically established. In this paper we will focus oil estimating the number of components in a mixture of multilayer perceptrons and proving the convergence of the BIC criterion in this frame. The penalized marginal-likelihood for mixture models and hidden Markov models introduced by Keribin [Consistent estimation of the order of mixture models, Sankhya Indian J. Stat. 62 (2000) 49-66] and, respectively, Gassiat [Likelihood ratio inequalities with applications to various mixtures, Ann. Inst. Henri Poincare 38 (2002) 897-906] is extended to mixtures of multilayer perceptrons for which a penalized-likelihood criterion is proposed. We prove its convergence under some hypothesis which involve essentially the bracketing entropy of the generalized score-function class and illustrate it by some numerical examples. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1321 / 1329
页数:9
相关论文
共 50 条
  • [21] Estimating number of components in Gaussian mixture model using combination of greedy and merging algorithm
    Stepanova, Karla
    Vavrecka, Michal
    PATTERN ANALYSIS AND APPLICATIONS, 2018, 21 (01) : 181 - 192
  • [22] Estimating the number of pure chemical components in a mixture by X-ray absorption spectroscopy
    Manceau, Alain
    Marcus, Matthew
    Lenoir, Thomas
    JOURNAL OF SYNCHROTRON RADIATION, 2014, 21 : 1140 - 1147
  • [23] ESTIMATING COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS
    DAY, NE
    BIOMETRIKA, 1969, 56 (03) : 463 - &
  • [24] TECHNIQUES FOR THE MINIMIZATION OF MULTILAYER PERCEPTRONS
    MIRZAI, AR
    HIGGINS, A
    TSAPTSINOS, D
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 1993, 6 (03) : 265 - 277
  • [25] ESTIMATING THE NUMBER OF COMPONENTS IN FINITE MIXTURE MODELS VIA THE GROUP-SORT-FUSE PROCEDURE
    Manole, Tudor
    Khalili, Abbas
    ANNALS OF STATISTICS, 2021, 49 (06): : 3043 - 3069
  • [26] Data compression with multilayer perceptrons
    Manger, R
    Proceedings of the 10th International Conference on Operational Research - KOI 2004, 2005, : 121 - 130
  • [27] ON THE DECISION REGIONS OF MULTILAYER PERCEPTRONS
    GIBSON, GJ
    COWAN, CFN
    PROCEEDINGS OF THE IEEE, 1990, 78 (10) : 1590 - 1594
  • [28] Efficiently learning multilayer perceptrons
    Bunzmann, C
    Biehl, M
    Urbanczik, R
    PHYSICAL REVIEW LETTERS, 2001, 86 (10) : 2166 - 2169
  • [29] MMLD Inference of Multilayer Perceptrons
    Makalic, Enes
    Allison, Lloyd
    ALGORITHMIC PROBABILITY AND FRIENDS: BAYESIAN PREDICTION AND ARTIFICIAL INTELLIGENCE, 2013, 7070 : 261 - 272
  • [30] ERROR SURFACES FOR MULTILAYER PERCEPTRONS
    HUSH, DR
    HORNE, B
    SALAS, JM
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1992, 22 (05): : 1152 - 1161