Estimating the number of components in a mixture of multilayer perceptrons

被引:5
|
作者
Olteanu, M. [1 ]
Rynkiewicz, J. [1 ]
机构
[1] Univ Paris 01, SAMOS MATISSE CES, UMR 8174, F-75013 Paris, France
关键词
penalized likelihood; Bayesian information criterion (BIC); mixture models; multilayer perceptrons;
D O I
10.1016/j.neucom.2007.12.022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bayesian information criterion (BIC) criterion is widely used by the neural-network community for model selection tasks, although its convergence properties are not always theoretically established. In this paper we will focus oil estimating the number of components in a mixture of multilayer perceptrons and proving the convergence of the BIC criterion in this frame. The penalized marginal-likelihood for mixture models and hidden Markov models introduced by Keribin [Consistent estimation of the order of mixture models, Sankhya Indian J. Stat. 62 (2000) 49-66] and, respectively, Gassiat [Likelihood ratio inequalities with applications to various mixtures, Ann. Inst. Henri Poincare 38 (2002) 897-906] is extended to mixtures of multilayer perceptrons for which a penalized-likelihood criterion is proposed. We prove its convergence under some hypothesis which involve essentially the bracketing entropy of the generalized score-function class and illustrate it by some numerical examples. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1321 / 1329
页数:9
相关论文
共 50 条
  • [1] Estimating alarm thresholds and the number of components in mixture distributions
    Burr, Tom
    Hamada, Michael S.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2012, 685 : 55 - 61
  • [2] BOUNDS ON THE NUMBER OF HIDDEN NEURONS IN MULTILAYER PERCEPTRONS
    HUANG, SC
    HUANG, YF
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (01): : 47 - 55
  • [3] A method for estimating the number of components in a normal mixture density function
    Hoffbeck, JP
    Landgrebe, D
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 1675 - 1677
  • [4] Estimating the number of pure chemical components in a mixture by maximum likelihood
    Levina, E.
    Wagaman, A. S.
    Callender, A. F.
    Mandair, G. S.
    Morris, M. D.
    JOURNAL OF CHEMOMETRICS, 2007, 21 (1-2) : 24 - 34
  • [5] Estimating the number of components in a finite mixture model: the special case of homogeneity
    Schlattmann, P
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 41 (3-4) : 441 - 451
  • [6] Estimating the number of components in Gaussian mixture models adaptively for medical image
    Xie, Cong-Hua
    Chang, Jin-Yi
    Liu, Yong-Jun
    OPTIK, 2013, 124 (23): : 6216 - 6221
  • [7] ON ESTIMATING THE NUMBER OF COMPONENTS IN A FINITE MIXTURE OF POWER-SERIES DISTRIBUTIONS
    ANTONIADIS, A
    BERRUYER, J
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1986, 4 (04) : 229 - 241
  • [8] An adaptive optimization method for estimating the number of components in a Gaussian mixture model
    Sun, Shuping
    Tong, Yaonan
    Zhang, Biqiang
    Yang, Bowen
    He, Peiguang
    Song, Wei
    Yang, Wenbo
    Wu, Yilin
    Liu, Guangyu
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 64
  • [9] Specification of training sets and the number of hidden neurons for multilayer perceptrons
    Camargo, LS
    Yoneyama, T
    NEURAL COMPUTATION, 2001, 13 (12) : 2673 - 2680
  • [10] Multilayer perceptrons: Approximation order and necessary number of hidden units
    Trenn, Stephan
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (05): : 836 - 844