High-Throughput Imaging and Spectral Analysis of Gold Nanoparticles Through Waveguide Excitation

被引:0
|
作者
Yong, Wei-Han [1 ]
Shen, Li [1 ,2 ]
Hou, Yuan-Chih [2 ,3 ]
Lai, Chian-Hui [4 ]
Tsai, Wan-Shao [1 ,3 ]
机构
[1] Natl Chung Hsing Univ, Grad Inst Optoelect Engn, Taichung 402, Taiwan
[2] ASML, Tainan 741, Taiwan
[3] Natl Chung Hsing Univ, Elect Engn Dept, Taichung 402, Taiwan
[4] Natl Chung Hsing Univ, Grad Inst Biomed Engn, Taichung 402, Taiwan
关键词
Light sources; Optical interferometry; Nanoparticles; Imaging; Substrates; Microscopy; Manganese; Gold nanoparticles (AuNPs); high-throughput detection; imaging spectrometer; localized surface plasmon resonance (LSPR); SURFACE-PLASMON RESONANCE; REFRACTIVE-INDEX SENSITIVITY; SPECTROSCOPY; SYSTEM; SIZE;
D O I
10.1109/JSEN.2022.3211944
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A waveguide (WG) excitation-based hyperspectral imaging (HSI) system equipped with a white-light source and Fourier transform spectrometer is presented. Both the microscopic images and spectra of spatially resolved gold nanoparticles (AuNPs) with sizes from 60 to 100 nm are taken at selected pixels. This system is also compared with the conventional one based on dark-field (DF) excitation using the same microscopic imaging setup. The spectral peaks and linewidths of imaged AuNPs are verified with finite-difference time-domain (FDTD) calculations. The high-throughput capability of our system is demonstrated with the bulk and surface refractive index (RI) sensing of AuNPs. The measured bulk wavelength sensitivity depends on the size of AuNPs and ranges from 120 to 262 nm/RIU for sizes between 60 and 100 nm. The surface RI sensing of AuNPs shows an index change of about 0.01 RIU for a three-layer stack of bovine serum albumin (BSA) adsorbed on 100-nm AuNPs, which agrees with our estimation.
引用
收藏
页码:21642 / 21650
页数:9
相关论文
共 50 条
  • [31] High-throughput screening analysis
    不详
    R&D MAGAZINE, 1997, 39 (08): : 47 - 47
  • [32] High-throughput tetrad analysis
    Ludlow C.L.
    Scott A.C.
    Cromie G.A.
    Jeffery E.W.
    Sirr A.
    May P.
    Lin J.
    Gilbert T.L.
    Hays M.
    Dudley A.M.
    Nature Methods, 2013, 10 (7) : 671 - 675
  • [33] High-throughput ultraviolet photoacoustic microscopy with multifocal excitation
    Imai, Toru
    Shi, Junhui
    Wong, Terence T. W.
    Li, Lei
    Zhu, Liren
    Wang, Lihong V.
    JOURNAL OF BIOMEDICAL OPTICS, 2018, 23 (03)
  • [34] High-Throughput AlphaLISA Analysis
    Rai, Satish
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2012, 32 (14): : 24 - 25
  • [35] High-throughput tetrad analysis
    Ludlow, Catherine L.
    Scott, Adrian C.
    Cromie, Gareth A.
    Jeffery, Eric W.
    Sirr, Amy
    May, Patrick
    Lin, Jake
    Gilbert, Teresa L.
    Hays, Michelle
    Dudley, Aimee M.
    NATURE METHODS, 2013, 10 (07) : 671 - +
  • [36] High-Throughput Detection and Quantification of Mitochondrial Fusion Through Imaging Flow Cytometry
    Nascimento, Aldo
    Lannigan, Joanne
    Kashatus, David
    CYTOMETRY PART A, 2016, 89A (08) : 708 - 719
  • [37] High-throughput screening of nanoparticles in drug delivery
    Tome, Ines
    Francisco, Vitor
    Fernandes, Hugo
    Ferreira, Lino
    APL BIOENGINEERING, 2021, 5 (03)
  • [38] Automated imaging and analysis of C. neoformans for high-throughput assays
    Chang, A. L.
    Srikanta, D. L.
    Williams, M.
    Brent, M. R.
    Doering, T. L.
    MYCOSES, 2014, 57 : 84 - 85
  • [39] Fourier transform infrared imaging for high-throughput analysis of pharmaceutical formulations
    Chan, KLA
    Kazarian, SG
    JOURNAL OF COMBINATORIAL CHEMISTRY, 2005, 7 (02): : 185 - 189
  • [40] Dark-Field Microwells toward High-Throughput Direct miRNA Sensing with Gold Nanoparticles
    Hwu, Stephanie
    Blickenstorfer, Yves
    Tiefenauer, Raphael F.
    Gonnelli, Claudio
    Schmidheini, Lukas
    Luchtefeld, Ines
    Hoogenberg, Bas-Jan
    Gisiger, Andrea B.
    Voros, Janos
    ACS SENSORS, 2019, 4 (07) : 1950 - 1956