Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation

被引:143
|
作者
Drovandi, C. C. [1 ]
Pettitt, A. N. [1 ,2 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[2] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YW, England
关键词
Approximate Bayesian computation; Autologistic model; Inference; Macroparasite; Markov process; Sequential Monte Carlo; SEQUENTIAL MONTE-CARLO; STOCHASTIC SIMULATION; LIKELIHOODS; MODELS;
D O I
10.1111/j.1541-0420.2010.01410.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We estimate the parameters of a stochastic process model for a macroparasite population within a host using approximate Bayesian computation (ABC). The immunity of the host is an unobserved model variable and only mature macroparasites at sacrifice of the host are counted. With very limited data, process rates are inferred reasonably precisely. Modeling involves a three variable Markov process for which the observed data likelihood is computationally intractable. ABC methods are particularly useful when the likelihood is analytically or computationally intractable. The ABC algorithm we present is based on sequential Monte Carlo, is adaptive in nature, and overcomes some drawbacks of previous approaches to ABC. The algorithm is validated on a test example involving simulated data from an autologistic model before being used to infer parameters of the Markov process model for experimental data. The fitted model explains the observed extra-binomial variation in terms of a zero-one immunity variable, which has a short-lived presence in the host.
引用
收藏
页码:225 / 233
页数:9
相关论文
共 50 条
  • [41] Approximate Bayesian computation methods
    Celeux, Gilles
    [J]. STATISTICS AND COMPUTING, 2012, 22 (06) : 1165 - 1166
  • [42] Application of approximate Bayesian computation for estimation of modified weibull distribution parameters for natural fiber strength with high uncertainty
    Ravandi, M.
    Hajizadeh, P.
    [J]. JOURNAL OF MATERIALS SCIENCE, 2022, 57 (04) : 2731 - 2743
  • [43] Adaptive approximate Bayesian computation
    Beaumont, Mark A.
    Cornuet, Jean-Marie
    Marin, Jean-Michel
    Robert, Christian P.
    [J]. BIOMETRIKA, 2009, 96 (04) : 983 - 990
  • [44] Multifidelity Approximate Bayesian Computation
    Prescott, Thomas P.
    Baker, Ruth E.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01): : 114 - 138
  • [45] Approximate Bayesian Computation for Smoothing
    Martin, James S.
    Jasra, Ajay
    Singh, Sumeetpal S.
    Whiteley, Nick
    Del Moral, Pierre
    McCoy, Emma
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2014, 32 (03) : 397 - 420
  • [46] Correcting Approximate Bayesian Computation
    Templeton, Alan R.
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 2010, 25 (09) : 488 - 489
  • [47] Hierarchical Approximate Bayesian Computation
    Turner, Brandon M.
    Van Zandt, Trisha
    [J]. PSYCHOMETRIKA, 2014, 79 (02) : 185 - 209
  • [48] Handbook of Approximate Bayesian Computation
    Franks, Jordan J.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (532) : 2100 - 2101
  • [49] Approximate Bayesian computation and MCMC
    Plagnol, V
    Tavaré, S
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002, 2004, : 99 - 113
  • [50] A tutorial on approximate Bayesian computation
    Turner, Brandon M.
    Van Zandt, Trisha
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2012, 56 (02) : 69 - 85