Direct proof of integrability of Calogero-Moser model

被引:1
|
作者
Gonera, C [1 ]
机构
[1] Univ Lodz, Dept Field Theory, PL-90236 Lodz, Poland
关键词
D O I
10.1063/1.532534
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The straightforward proof of involutiveness of the set of integrals of motion for the general Calogero-Moser model is given for the classical as well as the quantum case. (C) 1998 American Institute of Physics.
引用
收藏
页码:4759 / 4765
页数:7
相关论文
共 50 条
  • [21] Flows of Calogero-Moser Systems
    Ben-Zvi, David
    Nevins, Thomas
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [22] Rigidity, functional equations and the Calogero-Moser model
    Braden, HW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (11): : 2197 - 2204
  • [23] SUPERINTEGRABILITY OF THE CALOGERO-MOSER SYSTEM
    WOJCIECHOWSKI, S
    PHYSICS LETTERS A, 1983, 95 (06) : 279 - 281
  • [24] On the geometry of the Calogero-Moser system
    Couwenberg, W
    Heckman, G
    Looijenga, E
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2005, 16 (3-4): : 443 - 459
  • [25] The geometry of Calogero-Moser systems
    Hurtubise, J
    Nevins, T
    ANNALES DE L INSTITUT FOURIER, 2005, 55 (06) : 2091 - 2116
  • [26] A GENERALIZATION OF THE CALOGERO-MOSER SYSTEM
    GIBBONS, J
    HERMSEN, T
    PHYSICA D, 1984, 11 (03): : 337 - 348
  • [27] A∞-modules and Calogero-Moser spaces
    Berest, Yuri
    Chalykh, Oleg
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 607 : 69 - 112
  • [28] On singular Calogero-Moser spaces
    Bellamy, Gwyn
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 315 - 326
  • [29] On the Cohomology of Calogero-Moser Spaces
    Bonnafe, Cedric
    Shan, Peng
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (04) : 1091 - 1111
  • [30] Geometry of Calogero-Moser systems
    Biswas, Indranil
    Hurtubise, Jacques
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (09)