Fractal entropies and dimensions for microstates spaces

被引:2
|
作者
Jung, K [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
free probability; microstate; free entropy; Hausdorff measure; Hausdorff dimension;
D O I
10.1016/j.jfa.2004.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Voiculescu's notion of a matricial microstate we introduce fractal dimensions and entropies for finite sets of selfadjoint operators in a tracial von Neumann algebra. We show that they possess properties similar to their classical predecessors. We relate the new quantities to free entropy and free entropy dimension and show that a modified version of free Hausdorff dimension is an algebraic invariant. We compute the free Hausdorff dimension in the cases where the set generates a finite-dimensional algebra or where the set consists of a single selfadjoint. We show that the Hausdorff dimension becomes additive for such sets in the presence of freeness. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:217 / 251
页数:35
相关论文
共 50 条