A modular clutter rejection technique for FLIR imagery using region-based principal component analysis

被引:1
|
作者
Rizvi, SA [1 ]
Saadawi, TN [1 ]
Nasrabadi, NM [1 ]
机构
[1] CUNY Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA
关键词
D O I
10.1109/ICIP.2000.899456
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper(1), a modular clutter rejection technique using region-based principal component analysis (PCA) is proposed. Our modular clutter rejection system uses dynamic ROI extraction to overcome the problem of poorly centered targets. In dynamic ROI extraction, a representative ROI is moved in several directions with respect to the center of the potential target image to extract a number of ROIs. Each module in the proposed system applies region-based PCA to generate the feature vectors, which are subsequently used to decide about the identity of the potential target. We also present experimental results using real-life data evaluating and comparing the performance of the clutter rejection systems with static and dynamic ROI extraction.
引用
收藏
页码:475 / 478
页数:4
相关论文
共 50 条
  • [41] REGION-BASED CO-SEISMIC GROUND DISPLACEMENT DECTECTION USING OPTICAL AERIAL IMAGERY
    Cheng, Min-Lung
    Satoh, Toshiaki
    Matsuoka, Masashi
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2940 - 2943
  • [42] Adaptive Ground Clutter Reduction in Ground-Penetrating Radar Data Based on Principal Component Analysis
    Chen, Gaoxiang
    Fu, Liyun
    Chen, Kanfu
    Boateng, Cyril D.
    Ge, Shuangcheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (06): : 3271 - 3282
  • [43] Frequency response function based damage identification using principal component analysis and pattern recognition technique
    Bandara, Rupika P.
    Chan, Tommy H. T.
    Thambiratnam, David P.
    ENGINEERING STRUCTURES, 2014, 66 : 116 - 128
  • [44] Mapping of climate vulnerability of the coastal region of Bangladesh using principal component analysis
    Uddin, Md Nasir
    Islam, A. K. M. Saiful
    Bala, Sujit Kumar
    Islam, G. M. Tarekul
    Adhikary, Sudipta
    Saha, Debanjali
    Haque, Shammi
    Fahad, Md Golam Rabbani
    Akter, Rabeya
    APPLIED GEOGRAPHY, 2019, 102 : 47 - 57
  • [45] Silicon Photovoltaic Systems Performance Assessment Using the Principal Component Analysis Technique
    Lotfi, Hicham
    Adar, Mustapha
    Bennouna, Amin
    Izbaim, Driss
    Oum'Bark, Fatimazahra
    Ouacha, El Houssaine
    Materials Today: Proceedings, 2021, 51 : 1966 - 1974
  • [46] A new Image Compression Technique using Principal Component Analysis and Huffman Coding
    Vaish, Ankita
    Kumar, Manoj
    2014 INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (PDGC), 2014, : 301 - 305
  • [47] Silicon Photovoltaic Systems Performance Assessment Using the Principal Component Analysis Technique
    Lotfi, Hicham
    Adar, Mustapha
    Bennouna, Amin
    Izbaim, Driss
    Oum'bark, Fatimazahra
    Ouacha, El Houssaine
    MATERIALS TODAY-PROCEEDINGS, 2022, 51 : 1966 - 1974
  • [48] Using principal component analysis technique in the instrumental shade sorting of textile fabrics
    Hasanlou, Elham
    Izadan, Hossein
    Khalili, Haleh
    COLOR RESEARCH AND APPLICATION, 2017, 42 (05): : 599 - 608
  • [50] Biometrics Based Attendance Checking using Principal Component Analysis
    Dela Cruz, Jennifer C.
    Paglinawan, Arnold C.
    Bonifacio, Miguel Isiah R.
    Flores, Allan Jake D.
    Hurna, Earl Vic B.
    2015 IEEE REGION 10 HUMANITARIAN TECHNOLOGY CONFERENCE (R10-HTC), 2015,