Generalized Lie-Type Derivations of Alternative Algebras

被引:0
|
作者
Ferreira, B. L. M. [1 ]
de Moraes, G. C. [2 ]
机构
[1] Fed Univ Technol, 800 Prof Laura Pacheco Bastos Ave, BR-85053510 Guarapuava, Brazil
[2] Fed Univ ABC, 5001 Estados Ave, BR-09210580 Santo Andre, SP, Brazil
关键词
alternative algebra; generalized Lie derivation; TRIPLE ASTERISK-PRODUCT; UNITAL ALGEBRAS; MAPS; MAPPINGS;
D O I
10.3103/S1066369X2109005X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we intend to describe generalized Lie-type derivations using, among other things, a generalization for alternative algebras of the result: "If F : A -> A is a generalized Lie n-derivation associated with a Lie n-derivation D, then a linear map H = F - D satisfies H(p(n)(x(1), x(2),..., x(n))) = p(n)(H(x(1)), x(2),..., x(n)) for all x(1), x(2),..., x(n) is an element of A". Thus, if A is a unital alternative algebra with a nontrivial idempotent e1 satisfying certain conditions, then a generalized Lie-type derivation F : A -> A is of the form F(x) = lambda x+Xi(x) for all x is an element of A, where lambda is an element of Z(A) and Xi : A -> A is a Lie-type derivation.
引用
收藏
页码:33 / 40
页数:8
相关论文
共 50 条
  • [31] Additive Lie (ξ-Lie) derivations and generalized Lie (ξ-Lie) derivations on prime algebras
    Xiao Fei Qi
    Jin Chuan Hou
    Acta Mathematica Sinica, English Series, 2013, 29 : 383 - 392
  • [32] On generalized matrix algebras having multiplicative generalized Lie type derivations
    Ashraf, Mohammad
    Jabeen, Aisha
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2021, 12 (02): : 267 - 285
  • [33] On the nilpotency and decomposition of Lie-type algebras
    N. A. Koreshkov
    Mathematical Notes, 2007, 82 : 321 - 331
  • [34] On the nilpotency and decomposition of lie-type algebras
    Koreshkov, N. A.
    MATHEMATICAL NOTES, 2007, 82 (3-4) : 321 - 331
  • [35] *-Lie-type maps on C*-algebras
    Ferreira, Ruth Nascimento
    Macedo Ferreira, Bruno Leonardo
    Guzzo Junior, Henrique
    Costa, Bruno Tadeu
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (12) : 5145 - 5154
  • [36] Generalized derivations of current Lie algebras
    Benkovic, Dominik
    Eremita, Daniel
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (11) : 4603 - 4611
  • [37] Generalized Derivations of Lie Color Algebras
    Chen, Liangyun
    Ma, Yao
    Ni, Lin
    RESULTS IN MATHEMATICS, 2013, 63 (3-4) : 923 - 936
  • [38] Generalized (α, β, γ)-derivations on Lie C*-algebras
    Lu, Gang
    Jin, Yuanfeng
    Park, Choonkil
    AIMS MATHEMATICS, 2020, 5 (06): : 6949 - 6958
  • [39] Generalized Derivations of Lie Color Algebras
    Liangyun Chen
    Yao Ma
    Lin Ni
    Results in Mathematics, 2013, 63 : 923 - 936
  • [40] Generalized Lie derivations on triangular algebras
    Benkovic, Dominik
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (06) : 1532 - 1544