Consensus clustering of single-cell RNA-seq data by enhancing network affinity

被引:29
|
作者
Cui, Yaxuan [1 ]
Zhang, Shaoqiang [1 ]
Liang, Ying [1 ]
Wang, Xiangyun [1 ]
Ferraro, Thomas N. [2 ]
Chen, Yong [3 ]
机构
[1] Tianjin Normal Univ, Coll Comp & Informat Engn, Tianjin 300387, Peoples R China
[2] CMSRU, Dept Biomed Sci, Camden, NJ USA
[3] Rowan Univ, Dept Mol & Cellular Biosci, Camden, NJ 08028 USA
基金
美国国家科学基金会;
关键词
single-cell RNA-seq; clustering algorithm; bioinformatics; cell typing; GENE-EXPRESSION; HETEROGENEITY; EMBRYOS; STATES; ATLAS; FATE;
D O I
10.1093/bib/bbab236
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Elucidation of cell subpopulations at high resolution is a key and challenging goal of single-cell ribonucleic acid (RNA) sequencing (scRNA-seq) data analysis. Although unsupervised clustering methods have been proposed for de novo identification of cell populations, their performance and robustness suffer from the high variability, low capture efficiency and high dropout rates which are characteristic of scRNA-seq experiments. Here, we present a novel unsupervised method for Single-cell Clustering by Enhancing Network Affinity (SCENA), which mainly employed three strategies: selecting multiple gene sets, enhancing local affinity among cells and clustering of consensus matrices. Large-scale validations on 13 real scRNA-seq datasets show that SCENA has high accuracy in detecting cell populations and is robust against dropout noise. When we applied SCENA to large-scale scRNA-seq data of mouse brain cells, known cell types were successfully detected, and novel cell types of interneurons were identified with differential expression of gamma-aminobutyric acid receptor subunits and transporters. SCENA is equipped with CPU+GPU (Central Processing Units+Graphics Processing Units) heterogeneous parallel computing to achieve high running speed. The high performance and running speed of SCENA combine into a new and efficient platform for biological discoveries in clustering analysis of large and diverse scRNA-seq datasets.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Clustering Single-Cell RNA-Seq Data with Regularized Gaussian Graphical Model
    Liu, Zhenqiu
    GENES, 2021, 12 (02) : 1 - 12
  • [22] scGAC: a graph attentional architecture for clustering single-cell RNA-seq data
    Cheng, Yi
    Ma, Xiuli
    BIOINFORMATICS, 2022, 38 (08) : 2187 - 2193
  • [23] Clustering and visualization of single-cell RNA-seq data using path metrics
    Manousidaki, Andriana
    Little, Anna
    Xie, Yuying
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (05)
  • [24] Single-cell RNA-seq data clustering: A survey with performance comparison study
    Li, Ruiyi
    Guan, Jihong
    Zhou, Shuigeng
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2020, 18 (04)
  • [25] Clustering single-cell RNA-seq data by rank constrained similarity learning
    Mei, Qinglin
    Li, Guojun
    Su, Zhengchang
    BIOINFORMATICS, 2021, 37 (19) : 3235 - 3242
  • [26] Comparison of Gene Selection Methods for Clustering Single-cell RNA-seq Data
    Zhu, Xiaoshu
    Wang, Jianxin
    Li, Rongruan
    Peng, Xiaoqing
    CURRENT BIOINFORMATICS, 2023, 18 (01) : 1 - 11
  • [27] scGNN 2.0: a graph neural network tool for imputation and clustering of single-cell RNA-Seq data
    Gu, Haocheng
    Cheng, Hao
    Ma, Anjun
    Li, Yang
    Wang, Juexin
    Xu, Dong
    Ma, Qin
    BIOINFORMATICS, 2022, 38 (23) : 5322 - 5325
  • [28] A copula based topology preserving graph convolution network for clustering of single-cell RNA-seq data
    Lall, Snehalika
    Ray, Sumanta
    Bandyopadhyay, Sanghamitra
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (03)
  • [29] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)
  • [30] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20