Biologically Plausible Models of Homeostasis and STDP: Stability and Learning in Spiking Neural Networks

被引:0
|
作者
Carlson, Kristofor D. [1 ]
Richert, Micah [2 ]
Dutt, Nikil [3 ]
Krichmar, Jeffrey L. [1 ,3 ]
机构
[1] Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92697 USA
关键词
ORIENTATION SPECIFICITY; PLASTICITY; RULE; SUPPRESSION; NEURONS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spiking neural network (SNN) simulations with spike-timing dependent plasticity (STDP) often experience runaway synaptic dynamics and require some sort of regulatory mechanism to stay within a stable operating regime. Previous homeostatic models have used L1 or L2 normalization to scale the synaptic weights but the biophysical mechanisms underlying these processes remain undiscovered. We propose a model for homeostatic synaptic scaling that modifies synaptic weights in a multiplicative manner based on the average postsynaptic firing rate as observed in experiments. The homeostatic mechanism was implemented with STDP in conductance-based SNNs with Izhikevich-type neurons. In the first set of simulations, homeostatic synaptic scaling stabilized weight changes in STDP and prevented runaway dynamics in simple SNNs. During the second set of simulations, homeostatic synaptic scaling was found to be necessary for the unsupervised learning of V1 simple cell receptive fields in response to patterned inputs. STDP, in combination with homeostatic synaptic scaling, was shown to be mathematically equivalent to non-negative matrix factorization (NNMF) and the stability of the homeostatic update rule was proven. The homeostatic model presented here is novel, biologically plausible, and capable of unsupervised learning of patterned inputs, which has been a significant challenge for SNNs with STDP.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule
    Hao, Yunzhe
    Huang, Xuhui
    Dong, Meng
    Xu, Bo
    NEURAL NETWORKS, 2020, 121 : 387 - 395
  • [2] A review of learning in biologically plausible spiking neural networks
    Taherkhani, Aboozar
    Belatreche, Ammar
    Li, Yuhua
    Cosma, Georgina
    Maguire, Liam P.
    McGinnity, T. M.
    NEURAL NETWORKS, 2020, 122 : 253 - 272
  • [3] Biologically Plausible Sequence Learning with Spiking Neural Networks
    Liu, Zuozhu
    Chotibut, Thiparat
    Hillar, Christopher
    Lin, Shaowei
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1316 - 1323
  • [4] Implementation of biologically plausible spiking neural networks models on the POEtic tissue
    Moreno, JM
    Eriksson, J
    Iglesias, J
    Villa, AEP
    EVOLVABLE SYSTEMS: FROM BIOLOGY TO HARDWARE, 2005, 3637 : 188 - 197
  • [5] An unsupervised STDP-based spiking neural network inspired by biologically plausible learning rules and connections
    Dong, Yiting
    Zhao, Dongcheng
    Li, Yang
    Zeng, Yi
    NEURAL NETWORKS, 2023, 165 : 799 - 808
  • [6] Temporal sequence learning via adaptation in biologically plausible spiking neural networks
    Renato Duarte
    Peggy Seriès
    Abigail Morrison
    BMC Neuroscience, 15 (Suppl 1)
  • [7] BIOLOGICALLY PLAUSIBLE ILLUSIONARY CONTRAST PERCEPTION WITH SPIKING NEURAL NETWORKS
    Cohen-Duwek, Hadar
    Tsur, Elishai Ezra
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1586 - 1590
  • [8] FPGA Accelerated Simulation of Biologically Plausible Spiking Neural Networks
    Thomas, David B.
    Luk, Wayne
    PROCEEDINGS OF THE 2009 17TH IEEE SYMPOSIUM ON FIELD PROGRAMMABLE CUSTOM COMPUTING MACHINES, 2009, : 45 - 52
  • [9] Towards biologically plausible learning in neural networks
    Fernandez, Jesus Garcia
    Hortal, Enrique
    Mehrkanoon, Siamak
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [10] STDP Learning of Image Patches with Convolutional Spiking Neural Networks
    Saunders, Daniel J.
    Siegelmann, Hava T.
    Kozma, Robert
    Ruszinko, Miklos
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,