Codimension two surfaces pinched by normal curvature evolving by mean curvature flow

被引:7
|
作者
Baker, Charles [1 ]
Huy The Nguyen [2 ]
机构
[1] CSIRO, Hlth & Biosecur, Australian E Hlth Res Ctr, RBWH, Level 5 UQ Hlth Sci Bldg 901-16, Herston, Qld 4029, Australia
[2] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2017年 / 34卷 / 06期
关键词
Curvature flow; Mean curvature; Nonlinear parabolic equations; SUBMANIFOLDS; SPHERES;
D O I
10.1016/j.anihpc.2016.10.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that codimension two surfaces satisfying a nonlinear curvature condition depending on normal curvature smoothly evolve by mean curvature flow to round points. Crown Copyright (C) 2016 Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1599 / 1610
页数:12
相关论文
共 50 条
  • [41] Quadratically pinched hypersurfaces of the sphere via mean curvature flow with surgery
    Mat Langford
    Huy The Nguyen
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [42] Contracting Pinched Hypersurfaces in Spheres by Their Mean Curvature
    Li, Yan
    Xu, Hongwei
    Zhao, Entao
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2015, 11 (02) : 329 - 368
  • [43] Analysis of Diffusion Generated Motion for Mean Curvature Flow in Codimension Two: A Gradient-Flow Approach
    Tim Laux
    Nung Kwan Yip
    Archive for Rational Mechanics and Analysis, 2019, 232 : 1113 - 1163
  • [44] Analysis of Diffusion Generated Motion for Mean Curvature Flow in Codimension Two: A Gradient-Flow Approach
    Laux, Tim
    Yip, Nung Kwan
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (02) : 1113 - 1163
  • [45] NUMERICAL SURGERY FOR MEAN CURVATURE FLOW OF SURFACES
    Kovacs, Balazs
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (02): : A645 - A669
  • [46] Uniqueness of entire graphs evolving by mean curvature flow
    Daskalopoulos, Panagiota
    Saez, Mariel
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (796): : 201 - 227
  • [47] Evolving hypersurfaces by their mean curvature in the background manifold evolving by Ricci flow
    Sheng, Weimin
    Yu, Haobin
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (01)
  • [48] A convergent finite element algorithm for mean curvature flow in arbitrary codimension
    Binz, Tim
    Kovacs, Balazs
    INTERFACES AND FREE BOUNDARIES, 2023, 25 (03) : 373 - 400
  • [49] Remarks on the normal hyperbolic mean curvature flow
    Cheng, Qian
    He, Chun-Lei
    Huang, Shou-Jun
    ANALYSIS AND APPLICATIONS, 2024, 22 (02) : 407 - 423
  • [50] CURVATURE ESTIMATES FOR CONSTANT MEAN CURVATURE SURFACES
    Meeks, William H., III
    Tinaglia, Giuseppe
    DUKE MATHEMATICAL JOURNAL, 2019, 168 (16) : 3057 - 3102